Neural Computing
Theory and Practice

S-EEFREC

U

Philip D. Wasserman
ANZA Research, Inc.

FESE IESEFTEEEEC

£ =+

T

@ VAN NOSTRAND REINHOLD
New York

s5338

e

Copyright © 1989 by Van Nostrand Reinhold

Library of Congress Catalog Card Number 88-34842
ISBN 0-442-20743-3

All rights reserved. No part of this work covered by the copyright hereon may be
reproduced or used in any form or by any means—graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval
systems—without written permission of the publisher.

Printed in the United States of America

Van Nostrand Reinhold
115 Filth Avonue
Now York, Now York 10003

Van Nostrand Reinhold International Company Limited
1T Now Fattor Lane
London BCGAP 4EE, England

Van Nostrand Roinhold
480 La Trobo Streel
Maolhourne, Vicloria 3000, Australia

Nolson Canndn
1120 Birchimount Road
Scarborough, Ontario MIK 5G4, Canada

1615 10 1% 12 11 109 8 7 6 5 4

Library of Congress Cataloging-in-Publication Data
Wiasserman, Philip D 1937
Neural computing : theory and practice / Philip D. Wasserman.
|: (WL}
Includes hibliogeaphics and index,
INBN O 11220704 4

1. Nearal computers, 1 Title,
QATO.5.W 3535 19HY 88-34842
0005 delv C1P

Contents

Preface

Introduction

10.

Fundamentals of Artificial Neural Networks
Perceptrons

Backpropagation

Counterpropagation Networks

Statistical Methods

Hopfield Nets

Bidirectional Associative Memories
Adaptive Resonance Theory

Optical Neural Networks

The Cognitron and Neocognitron

vii

11

27

43

61

77

93

127
151

167

vl Contents
Appendix A: The Biological Neural Network
Appendix B: Vector and Matrix Operations
Appendix C: Training Algorithims

Index

189

201

211

223

Preface

What are artificial neural networks? What can they do? How do
they work? How can I use them? These and many similar questions
are being asked by professionals from a wide variety of disciplines.
Finding comprehensible answers has been difficult. University
courses are few, seminars are expensive, and the literature is exten-
sive and specialized. The several excellent books in print can prove
daunting. Often expressed in technical jargon, many of the treat-
ments assume a facility with branches of advanced mathematics
that are seldom used in other specialties.

This book provides a systematic entry path for the professional
who has not specialized in mathematical analysis. All of the impor-
tant concepts are first expressed in ordinary English. Informal
mathematical treatments are included when they clarify the expla-
nation. Complicated derivations and proofs are placed at the end
of chapters and references to other works are regularly provided.
These references constitute an extensive bibliography of important
writings in specific areas applicable to artificial neural networks.
This multilevel approach not only provides the reader with an
overview of artificial neural networks but also permits the serious
student an in-depth exploration of the subject.

Every effort has been made to produce a book that is easily
understood without oversimplification of the material. Readers
who go on to more theoretical studies should not need to unlearn
anything presented here. When simplifications are employed, they

vik

vill Preface

are labeled as such and references point o more detailed treat-
ments.

This book need not be read from cover to cover. Each chapter is
intended to be self-contained, assuming familiarity only with the
topics of Chapters 1 and 2. While this implies a certain amount of
repetition, most readers should not find it onerous.

Practicality has been a primary objective. If the chapters are
studied carefully, it should be possible to implement most of the
networks on a general-purpose computer. The reader is urged to
do so; no other method will produce the same depth of under-
standing.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Sarah, for her
encouragement and tolerance during the months I spent in the
company of my word processor.

Also, I would like to thank my friends and colleagues, who gave
s0 generously of their time and knowledge, corrected my errors,
and created an environment in which ideas developed rapidly. 1
would like to extend my special appreciation to Dr. Surapol Da-
sananda, Santa Clara University; Dr. Elizabeth Center, College of
Notre Dame; Dr. Peter Rowe, College of Notre Dame; Charles
Rockwell, Microlog Corp.; Tom Schwartz, The Schwartz Associ-
ates; Dennis Reinhardt, Dair Corp.; Coe Miles-Schlichting; and
Douglas Marquardt. Thanks also are due to Kyla Carlson and Nang
Cao for their help in preparing the illustrations.

I must, of course, take the blame for any residual errors; they
couldn’t watch me every minute.

Introduction

WHY ARTIFICIAL NEURAL NETWORKS?

After two decades of near eclipse, interest in artificial neural net-
works has grown rapidly over the past few years. Professionals
from such diverse fields as engineering, philosophy, physiology,
and psychology are intrigued by the potential offered by this tech-
nology and are seeking applications within their disciplines.

This resurgence of interest has been fired by both theoretical and
application successes. Suddenly, it appears possible to apply com-
putation to realms previously restricted to human intelligence; to
make machines that learn and remember in ways that bear a strik-
ing resemblance to human mental processes; and to give a new and
significant meaning to the much-abused term artificial intelli-
ugence.

CHARACTERISTICS OF ARTIFICIAL
NEURAL NETWORKS

Artificial neural networks are biologically inspired; that is, they are
composed of elements that perform in a manner that is analogous
to the most elementary functions of the biological neuron. These
elements are then organized in a way that may (or may not) be
related to the anatomy of the brain. Despite this superficial resem-

1

] Neural Computing Theory and Practice

blance, artificial neural networks exhibit a surprising number of
the brain's characteristics. For example, they learn from experi-
cncee, generalize from previous examples to new ones, and abstract
cssential characteristics from inputs containing irrelevant data.

Despite these functional similarities, not even the most optimis-
tic advocate will suggest that artificial neural networks will soon
duplicate the functions of the human brain. The actual “intelli-
gence’ exhibited by the most sophisticated artificial neural net-
works is below the level of a tapeworm; enthusiasm must be tem-
pered by current reality. It is, however, equally incorrect to ignore
the surprisingly brainlike performance of certain artificial neural
networks. These abilities, however limited they are today, hint that
a deep understanding of human intelligence may lie close at hand,
and along with it a host of revolutionary applications.

Learning

Artificial neural networks can modify their behavior in response to
their environment. This factor, more than any other, is responsible
for the interest they have received. Shown a set of inputs (perhaps
with desired outputs), they self-adjust to produce consistent re-
sponses. A wide variety of training algorithms has been developed,
cach with its own strengths and weaknesses. As we point out later
in this volume, there are important questions yet to be answered
regarding what things a network can be trained to do, and how the
training should be performed.

Generalization

Once trained, a network’s response can be, to a degree, insensitive
(o minor variations in its input. This ability to see through noise
and distortion to the pattern that lies within is vital to pattern
recognition in a real-world environment. Overcoming the literal-
mindedness of the conventional computer, it produces a system
that can deal with the imperfect world in which we live. It is
important to note that the artificial neural network generalizes
automatically as a result of its structure, not by using human intelli-
gence embedded in the form of ad hoc computer programs.

LRI RARAAN LYY} o
Abstraction

Some artificial neural networks are capable of abstracting the es-
sence of a set of inputs. For example, a network can be trained on a
sequence of distorted versions of the letter A. Aflter adequate train-
ing, application of such a distorted example will cause the network
to produce a perfectly formed letter. In one sense, it has learned to
produce something that it has never seen before.

T'his ability to extract an ideal from imperfect inputs raises inter-
esting philosophical issues; it is reminiscent of the concept of ide-
als found in Plato’s Republic. In any case, extracting idealized
prototypes is a highly useful ability in humans; it seems that now
we may share it with artificial neural networks.

Applicability

Artificial neural networks are not a panacea. They are clearly un-
suited to such tasks as calculating the payroll. It appears that they
will, however, become the preferred technique for a large class of
pattern-recognition tasks that conventional computers do poorly,
it at all.

HISTORICAL PERSPECTIVE

Humans have always wondered about their own thoughts. This
sclf-referential inquiry, the mind thinking of itself, may be a
uniquely human characteristic. Speculations on the nature of
thought abound, ranging from the spiritual to the anatomical. With
philosophers and theologians often opposing the opinions of
physiologists and anatomists, the questions have been hotly debat-
ed to little avail, as the subject is notoriously difficult to study.
Those relying on introspection and speculation have arrived at
conclusions that lack the rigor demanded by the physical sciences.
Experimenters have found the brain and nervous system to be diffi-
cult to observe and perplexing in organization. In short, the pow-
erful methods of scientific inquiry that have changed our view of
physical reality have been slow in finding application to the under-
standing of humans themselves.

] Neurnl Computing: Theory and Practice

Neurobiologists and neuroanatomists have macde substantial
progress. Painstakingly mapping out the structure and function of
the human nervous system, they came to understand much of the
brain’s “‘wiring,” but little of its operation. As their knowledge
grew, the complexity was found to be staggering. Hundreds of
billions of neurons, each connecting to hundreds or thousands of
others, comprise a system that dwarfs our most ambitious dreams
of supercomputers. Nevertheless, the brain is gradually yielding its
secrets to one of humankind’s most sustained and ambitious in-
quiries.

The improved understanding of the functioning of the neuron
and the pattern of its interconnections has allowed researchers to
produce mathematical models to test their theories. Experiments
can now be conducted on digital computers without involving
human or animal subjects, thereby solving many practical and ethi-
cal problems. From early work it became apparent that these mod-
els not only mimicked functions of the brain, but that they were
capable of performing useful functions in their own right. Hence,
two mutually reinforcing objectives of neural modeling were de-
fined and remain today: first, to understand the physiological and
psychological functioning of the human neural system; and sec-
ond, to produce computational systems (artificial neural networks)
that perform brainlike functions. It is the latter objective that is
the major focus of this book.

Along with the progress in neuroanatomy and neurophysiology,
psychologists were developing models of human learning. One
such model, which has proved most fruitful, was that of D. O.
Hebb, who in 1949 proposed a learning law that became the start-
ing point for artificial neural network training algorithms. Aug-
mented today by many other methods, it showed scientists of that
era how a network of neurons could exhibit learning behavior.

In the 19508 and 1960s, a group of researchers combined these
biological and psychological insights to produce the first artificial
ncural networks. Initially implemented as electronic circuits, they
were later converted to the more flexible medium of computer
simulation, the most common realization today. Early successes
produced a burst of activity and optimism. Marvin Minsky, Frank
Rosenblatt, Bernard Widrow, and others developed networks con-
sisting of a single layer of artificial neurons. Often called percep-

Introduction 5

trons, they were applied to such diverse problems as weather pre-
diction, electrocardiogram analysis, and artificial vision. It seemed
for a time that the key to intelligence had been found; reproducing
the human brain was only a matter of constructing a large enough
network.,

This illusion was soon dispelled. Networks failed to solve prob-
lems superficially similar to those they had been successful in solv-
Ing. These unexplained failures launched a period of intense analy-
sls. Marvin Minsky, carefully applying mathematical techniques,
developed rigorous theorems regarding network operation. His
rescarch led to the publication of the book Perceptrons (Minsky
and Papert 1969), in which he and Seymore Papert proved that the
single-layer networks then in use were theoretically incapable of
solving many simple problems, including the function performed
by a simple exclusive-or gate. Nor was Minsky optimistic about the
potential for progress:

The Perceptron has shown itself worthy of study despite (and
even because of!) its severe limitations. [t has many features
that attract attention: its linearity; its intriguing learning theo-
rem; its clear paradigmatic simplicity as a kind of parallel
computation. There is no reason to suppose that any of these
virtues carry over to the many-layered version. Nevertheless,
we consider it to be an important research problem to eluci-
date (or reject) our intuitive judgment that the extension is
sterile.

Perhaps some powerful convergence theorem will be dis-
covered, or some profound reason for the failure to produce
an interesting ‘‘learning theorem” for the multilayered ma-
chine will be found. (pp. 231-32)

Minsky’s brilliance, rigor, and prestige gave the book great credibil-
ity: its conclusions were unassailable. Discouraged researchers left
the field for areas of greater promise, government agencies redi-
rected their funding, and artificial neural networks lapsed into
obscurity for nearly two decades.

Nevertheless, a few dedicated scientists such as Teuvo Kohonen,
Stephen Grossberg, and James Anderson continued their efforts.
Often underfunded and unappreciated, some researchers had diffi-
culty finding publishers; hence, research published during the

4] Neural Computing: Theory and Practlce

1970s and early 1980s is found scattered among a wide variety of
journals, some of which are rather obscure. Gradually, a theoreti-
cal foundation emerged, upon which the more powerful multilay-
er networks of today are being constructed. Minsky’s appraisal has
proven excessively pessimistic; networks are now routinely solv-
ing many of the problems that he posed in his book.

In the past few years, theory has been translated into applica-
tion, and new corporations dedicated to the commercialization of
the technology have appeared. There has been an explosive in-
crease in the amount of research activity. With four major conven-
tions in 1987 in the field of artificial neural networks, and over
500 technical papers published, the growth rate has been phenom-
enal.

The lesson to be learned from this history is found in Clark’s law.
Propounded by the writer and scientist Arthur C. Clark, it states in
effect that if a respected senior scientist says a thing can be done,
he or she is almost always correct; if the scientist says it cannot be
done, he or she is almost always wrong. The history of science is a
chronicle of mistakes and partial truths. Today’s dogma becomes
tomorrow’s rubbish. Unquestioning acceptance of “‘facts,” what-
ever the source, can cripple scientific inquiry. From one point of
view, Minsky's excellent scientific work led to an unfortunate
hiatus in the progress of artificial neural networks. There is no
doubt, however, that the field had been plagued by unsupported
optimism and an inadequate theoretical basis. It may be that the
shock provided by Perceptrons allowed a period for the necessary
maturation of the field.

ARTIFICIAL NEURAL NETWORKS TODAY

I'here have been many impressive demonstrations of artificial neu-
ral network capabilities: a network has been trained to convert text
to phonetic representations, which were then converted to speech
by other means (Sejnowsky and Rosenberg 1987); another net-
work can recognize handwritten characters (Burr 1987); and a
neural network-based image-compression system has been de-
vised (Cottrell, Munro, and Zipser 1987). These all use the back-
propagation network, perhaps the most successful of the current
algorithms. Backpropagation, invented independently in three

Introduction 7

separate rescarch efforts (Werbos 1974; Parker 1982; and Ru-
melhart, Hinton, and Williams 1986), provides a systematic means
for training multilayer networks, thereby overcoming limitations
presented by Minsky.

As we point out in the chapters that follow, backpropagation is
not without its problems. First, there is no guarantee that the net-
work can be trained in a finite amount of time. Many training
cfforts fail after consuming large amounts of computer time. When
this happens, the training attempt must be repeated—with no cer-
tainty that the results will be any better. Also, there is no assurance
that the network will train to the best configuration possible. So-
called local minima can trap the training algorithm in an inferior
solution.

Many other network algorithms have been developed that have
specific advantages; several of these are discussed in the chapters
that follow. It should be emphasized that none of today’s networks
represents a panacea; all of them suffer from limitations in their
ability to learn and recall.

We are presented with a field having demonstrated performance,
unique potential, many limitations, and a host of unanswered
(uestions. It is a situation calling for optimism tempered with
caution. Authors tend to publish their successes and give their
failures little publicity, thereby creating an impression that may not
bhe realistic. Those seeking venture capital to start new firms must
present a convincing projection of substantial accomplishments
and profits. There exists, therefore, a substantial danger that artifi-
cial neural networks will be oversold before their time, promising
performance without the capability for delivery. If this happens,
the entire field could suffer a loss of credibility, possibly relapsing
into the Dark Ages of the 1970s. Much solid work is required to
improve existing networks. New techniques must be developed,
cxisting methods strengthened, and the theoretical foundation
hroadened before this field can realize its full potential.

PROSPECTS FOR THE FUTURE

Artificial neural networks have been proposed for tasks ranging
from battlefield management to minding the baby. Potential ap-
plications are those where human intelligence functions effort-

H Neursl Computing: Theory and Practice

lessly and conventional computation has proven cumbersome or
inadequate. This application class is at least as large as that
serviced by conventional computation, and the vision arises of
artificial neural networks taking their place alongside of conven-
tional computation as an adjunct of equal size and importance.
This will happen only if fundamental research vields results at a
rapid rate, as today’s theoretical foundations are inadequate to sup-
port such projections.

Artificial Neural Networks and
Expert Systems

The field of artificial intelligence has been dominated in recent
years by the logical- and symbol-manipulation disciplines. For ex-
ample, expert systems have been widely acclaimed and have
achieved many notable successes—as well as many failures. Some
say that artificial neural networks will replace current artificial
intelligence, but there are many indications that the two will coex-
ist and be combined into systems in which each technique per-
forms the tasks for which it is best suited. '

This viewpoint is supported by the way that humans operate in

the world. Activities requiring rapid responses are governed by .

pattern recognition. Since actions are produced rapidly and with-
out conscious effort, this mode of operation is essential for the
quick, spontancous responses needed to survive in a hostile envi-
ronment. Consider the consequences if our ancestors had to rea-
son out the correct response to a leaping carnivore!

When our pattern-recognition system fails to produce an unam-
biguous interpretation (and when time permits), the matter is re-
ferred o the higher mental functions. These may require more
information and certainly more time, but the quality of the result-
ing decisions can be superior.

One can envision an artificial system that mimics this division of
labor, An artificial neural network would produce an appropriate
response Lo its environment under most circumstances. Because
such networks can indicate the confidence level associated with
each decision, it would “‘know that it did not know,’ and would
refer that casc (o an expert system for resolution. The decisions

Introduction b

made at this higher level would be conerete and logical, but might
require the gathering of additional facts before a conclusion could
be reached. The combination of the two systems would be more
robust than either acting alone, and it would follow the highly
successful model provided by biological evolution.

Reliability Considerations

Before artificial neural networks can be applied where human life
or valuable assets are at stake, questions regarding their reliability
must be resolved.

Like the humans whose brain structure they mimic, artificial
neural networks retain a degree of unpredictability. Unless every
possible input is tried, there is no way to be certain of the precise
output. In a large network such exhaustive testing is impractical
and statistical estimates of performance must suffice. Under some
circumstances this is intolerable. For example, what is an accepta-
ble error rate for a network controlling a space defense system?
Most people would say that any error is intolerable; it might result
in unthinkable death and destruction. This attitude is not changed
by the fact that a2 human in the same situation might also make
mistakes.

The problem lies in the expectation that computers are absolute-
ly error free. Because artificial neural networks will sometimes
make errors even when they are functioning correctly, many feel
that this translates into unreliability, a characteristic we have found
unacceptable in our machines.

A related difficulty lies in the inability of traditional artificial
neural networks to ‘explain’” how they solve problems. The inter-
nal representations that result from training are often so complex
as to defy analysis in all but the most trivial cases. This is closely
related to our inability to explain how we recognize a person de-
spite differences in distance, angle, illumination, and the passage
of years. An expert system can trace back through its own reason-
ing process so that a human can check it for reasonableness. Incor-
poration of this ability into artificial neural networks has been
reported (Gallant 1988) and its development may have an impor-
tant effect upon the acceptability of these systems.

10 Neural Computing: Theory and Practice

SUMMARY

Artificial neural networks represent a major extension of computa-
tion. They promise human-made devices that perform functions
heretofore reserved for human beings. Dull, repetitive, or danger-
ous tasks can be performed by machines and entirely new applica-
tions will arise as the technology matures.

The theoretical foundations of artificial neural networks are ex-
panding rapidly, but they are currently inadequate to support the
more optimistic projections. Viewed historically, theory has devel-
oped faster than pessimists had projected and slower than opti-
mists had hoped, a typical situation. Today’s surge of interest has
set thousands of researchers to work in the field. It is reasonable to
expect a rapid increase in our understanding of artificial neural
networks leading to improved network paradigms and a host of
application opportunities.

References

Burr, D. J. 1987, Experiments with a connectionist text reader. In Pro-
ceedings of the First International Conference on Neural Networks,
eds. M. Caudill and C. Butler, vol. 4, pp. 717-24. San Diego, CA: SOS
Printing.

Cottrell, G. W., Munro, P, and Zipser, D. 1987. Image compression by
backpropagation: An example of extensional programming. Advances
in cognitive science (vol. 3). Norwood, NJ: Ablex.

Gallant, S. I. 1988. Connectionist expert systems. Communications of
the ACM 31:152-69.

Minsky, M., and Papert, S. 1969. Perceptrons. Cambridge, MA: MIT Press.

Parker, D. B. 1982. Learning-logic. Invention Report, $81-64, File 1. Of-
fice of Technology Licensing, Stanford University.

Rumelhart, D, E., Hinton, G. E., and Williams, R. J. 1986. Learning inter-
nal representations by error propagation. In Parallel distributed pro-
cessing, vol. 1, pp. 318—62. Cambridge, MA: MIT Press.

Sejnowski, T.J., and Rosenberg, C. R. 1987, Parallel networks that learn to
pronounce English text. Complex Systems 3:145-68.

Werbos, P. J. 1974. Beyond regression: New tools for prediction and
analysis in the bebavioral sciences. Masters thesis, Harvard Univer-
sity.

1

Fundamentals of
Artificial Neural
Networks

Artificial neural networks have been developed in a wide variety of
configurations. Despite this apparent diversity, network paradigms
have a great deal in common. In this chapter, recurring themes are
briefly identified and discussed so they will be familiar when en-
countered later in the book.

Notation and representations presented here have been selected
1s most representative of current practice (there are no published
standards), and are used throughout the book.

THE BIOLOGICAL PROTOTYPE

Artificial neural networks are biologically inspired; that is, re-
searchers are usually thinking about the organization of the brain
when considering network configurations and algorithms. At this
point the correspondence may end. Knowledge about the brain's
overall operation is so limited that there is little to guide those who
would emulate it. Hence, network designers must go beyond cur-
rent biological knowledge, seeking structures that perform useful
functions. In many cases, this necessary shift discards biological
plausibility; the brain becomes a metaphor; networks are pro-
duced that are organically infeasible or require a highly improba-
ble set of assumptions about brain anatomy and functioning.
Despite this tenuous, often nonexistent relationship with biolo-

11

12 Newral Computing: Theory and Practice

gy, artificial ncural networks continue to evoke comparisons with
the brain. Their functions are often reminiscent of human cogni-
tion; hence, it is difficult to avoid making the analogy. Unfortu-
nately, such comparisons are not benign; they create unrealistic
expectations that inevitably result in disillusionment. Research
funding based on false hopes can evaporate in the harsh light of
reality as it did in the 1960s, and this promising field could again
g0 into eclipse if restraint is not exercised.

Despite the preceding caveats, it remains profitable to under-
stand something of the mammalian nervous system; it is an entity
that successfully performs the tasks to which our artificial systems
only aspire. The following discussion is brief; Appendix A pro-
vides a more extensive (but by no means complete) treatment of
the mammalian nervous system for those who wish to know more
about this fascinating subject.

The human nervous system, built of cells called neurons, is of
staggering complexity. An estimated 10" neurons participate in
perhaps 10" interconnections over transmission paths that may
range for a meter or more. Each neuron shares many characteristics
with the other cells in the body, but has unique capabilities to
receive, process, and transmit electrochemical signals over the
ncural pathways that comprise the brain’s communication system.

Figure 1-1 shows the structure of a pair of typical biological
neurons. Dendrites extend from the cell body to other neurons
where they receive signals at a connection point called a synapse.
On the receiving side of the synapse, these inputs are conducted to
the cell body. There they are summed, some inputs tending to
excite the cell, others tending to inhibit its firing. When the cumu-
lative excitation in the cell body exceeds a threshold, the cell fires,
sending a signal down the axon to other neurons. This basic func-
tional outline has many complexities and exceptions; nevertheless,
most artificial neural networks model only these simple character-
ISTICS.

THE ARTIFICIAL NEURON

The artificial neuron was designed to mimic the first-order charac-
teristics ol the biological neuron. In essence, a sct of inputs are

Fundamentals of Artificlal Neural Networks 13

l\-g -{_‘\
\ \ / Q CELL BODY
J }) : sy
T) ©)
; ‘4)/ - AXON DENDRITES

A 5 ;)
' SYNAPSE /J
L‘\ 3,

Figure 1-1. Biological Ncuron

applied, each representing the output of another neuron. Each
input is multiplied by a corresponding weight, analogous to a syn-
aptic strength, and all of the weighted inputs are then summed to
determine the activation level of the neuron. Figure 1-2 shows a
model that implements this idea. Despite the diversity of network
paradigms, nearly all are based upon this configuration. Here, a set
of inputs labeled x;, x,, . . ., x, is applied to the artificial neuron.
These inputs, collectively referred to as the vector* X, correspond
10 the signals into the synapses of a biological neuron. Each signal
is multiplied by an associated weight w,, w,, . . ., w,, before it is
applied to the summation block, labeled E. Each weight corre-
sponds to the “‘strength’ of a single biological synaptic connec-
tion. (The set of weights is referred to collectively as the vector
W .) The summation block, corresponding roughly to the biologi-

*A few forms of vector notation are used throughout the book. Doing so
dramatically simplifies mathematical expressions, thereby preventing the
details from obscuring the concepts. Appendix B contains a short tutorial
on the vector notation that is used. If your vector skills are rusty, reading
this short tutorial now will bring great rewards in speed and depth of
comprehension of the material that follows.

14 Neural Computing: Theory and Practice

W
% .o
Ty o
W I I =
X X, & 1 14 Z _M K/
- V‘I | |
i AL _

NET = s ow, + X, 0w, T o+ X W

Figure 1-2. Artificial Neuron

cal cell body, adds all of the weighted inputs algebraically, produc-
ing an output that we call NET. This may be compactly stated in
vector notation as follows:

NET = XW

Activation Functions

The NET signal is usually further processed by an activation func-
tion I to produce the neuron’s output signal, OUT. This may be a
simple lincar function,

OUT = K(NET)
where K is a constant, a threshold function,

OUT =1 ifNET>T
OUT =0 otherwise

where 718 a constant threshold value, or a function that more
accurately simulates the nonlinear transfer characteristic of the
biological ncuron and permits more general network functions.

In Figure 1-3 the block labeled F accepts the NET output and
produces the signal labeled OUT. If the F processing block com-
presses the range of NET, so that OUT never exceeds some low

Fundamentals of Artificial Neural Networks 15

limits regardless of the value of NET, Fis called a squashing function.
T'he squashing function is often chosen to be the logistic function or
“sigmoid”’ (meaning S-shaped) as shown in Figure 1-4a. This function
is expressed mathematically as Fx) = 1/(1 +). Thus,

OUT = 141 + ™)

By analogy to analog electronic systems, we may think of the
activation function as defining a nonlinear gain for the artificial
neuron. This gain is calculated by finding the ratio of the change in
OUT to a small change in NET. Thus, gain is the slope of the curve
at a specific excitation level. It varies from a low value at large
negative excitations (the curve is nearly horizontal), to 2 high value
at zero excitation, and it drops back as excitation becomes very
large and positive. Grossberg (1973) found that this nonlinear gain
characteristic solves the noise-saturation dilemma that he posed;
that is, how can the same network handle both small and large
signals? Small input signals require high gain through the network
if they are to produce usable output; however, a large number of
cascaded high-gain stages can saturate the output with the ampli-
fied noise (random variations) that is present in any realizable net-
work. Also, large input signals will saturate high-gain stages, again
eliminating any usable output. The central high-gain region of the
logistic function solves the problem of processing small signals,
while its regions of decreasing gain at positive and negative ex-
tremes are appropriate for large excitations. In this way, a neuron
performs with appropriate gain over a wide range of input levels.
Another commonly used activation function is the hyperbolic

/

X, i z BET. . of QuUT = FCKNETY

| ARTIFICIAL NEURDN

Figure 1-3. Artificial Neuron with Activation Function

\

16 Neural Computing: Theory and Practice

OUT = 17€] + &~ = Fupen

out 1 CLOGISTIC FUNCTIOND

wn

1 |
NET A

Figure 1-4a. Sigmoidal Logistic Function

tangent. It is similar in shape to the logistic function and is often
used by biologists as a mathematical model of nerve-cell activa-

tion. Used as an artificial neural network activation function it is
expressed as follows:

OUT=tanh(x) = 2 rip (x) =/

Like the logistic function, the hyperbolic tangent function is $
shaped, but is symmetrical about the origin, resulting in OUT hav-
ing the value 0 when NET is 0 (see Figure 1-4b). Unlike the logistic
function, the hyperbolic tangent function has a bipolar value for
OUT, a characteristic that has been shown to be beneficial in cer
tain networks (see Chapter 3).

This simple model of the artificial neuron ignores many of the
characteristics of its biological counterpart. For example, it does
not take into account time delays that affect the dynamics of the
system; inputs produce an immediate output. More important, it
does not include the effects of synchronism or the frequency-
modulation function of the biological neuron, characteristics that
some researchers feel to be crucial.

Despite these limitations, networks formed of these neurons ex-
hibit attributes that are strongly reminiscent of the biological sys-
tem. Perhaps enough of the essential nature of the biological neu-

Fundamentals of Artificlal Neural Networks 17

ron has been captured to produce responses like the biological
system, or perhaps the similarity is coincidental; only time and
rescarch will tell,

SINGLE-LAYER ARTIFICIAL NEURAL
NETWORKS

Although a single neuron can perform certain simple pattern de-
(ection functions, the power of neural computation comes from
connecting neurons into networks. The simplest ne_tworlf is a
group of neurons arranged in a layer as shown on the right side of
ligure 1-5. Note that the circular nodes on the left serve only To
distribute the inputs; they perform no computation and hence will
not be considered to constitute a layer. For this reason, they are
shown as circles to distinguish them from the computing neuroqs,
which are shown as squares. The set of inputs X has each of its
clements connected to each artificial neuron through a separate
weight. Early artificial neural networks were no more c0fnplcx
than this. Each neuron simply output a weighted sum of the inputs
to the network. Actual artificial and biological networks may have
many of the connections deleted, but full connectivity is shown

or |

O

NET ——

Figure 1-4b. Hyperbolic Tangent Function

18 Neural Computing: Theory and Practice

B \\\1/

Figure 1-5. Single-Layer Neural Network

for reasons of generality. Also, there may be connections between
the outputs and inputs of neurons in a layer; such configurations
are treated in Chapter 6.

It is convenient to consider the weights to be elements of a
matrix W, The dimensions of the matrix are s rows by # columns,
where m is the number of inputs and # the number of neurons. For
cexample, the weight connecting the third input to the second neu-
ron would be w2, ,. In this way it may be seen that calculating the
sct of neuron NET outputs N for a layer is a simple matrix multipli-
cation. Thus N=XW, where N and X are row vectors.

MULTILAYER ARTIFICIAL NEURAL
NETWORKS

Larger, more complex networks generally offer greater computa-
tional capabilitics. Although networks have been constructed in
every imaginable configuration, arranging neurons in layers mim-
ics the layered structure of certain portions of the brain. These
multilayer networks have been proven to have capabilitics beyond

Fundamentals of Artificial Neural Networks 19

those of a single layer (see Chapter 2), and in recent years, algo-
rithms have been developed to train them.

Multilayer networks may be formed by simply cascading a group
ol single layers; the output of one layer provides the input to the
subscequent layer. Figure 1-6 shows such a network, again drawn
fully connected.

T'he Nonlinear Activation Function

Multilayer networks provide no increase in computational power
over a single-layer network unless there is a nonlinear activation
function between layers. Calculating the output of a layer consists
of multiplying the input vector by the first weight matrix, and then
(I there is no nonlinear activation function) multiplying the result-
ing vector by the second weight matrix. This may be expressed as:

(XW)W,

Since matrix multiplication is associative, the terms may be re-
prouped and written:

X(W, W)

I'his shows that a two-layer linear network is exactly equivalent to
A single layer having a weight matrix equal to the product of the
(wo weight matrixes. Hence, any multilayer linear network can be
replaced by an equivalent one-layer network. In Chapter 2 we
point out that single-layer networks are severely limited in their
computational capability; thus, the nonlinear activation functions
are vital to the expansion of the network’s capability beyond that
of the single-layer network.

Recurrent Networks
The networks considered up to this point have no feedback con-

nections, that is, connections through weights extending from the
outputs of a layer to the inputs of the same or previous layers. This

20 Neural Computing: Theory and Practlce

™
' K

1
% g P 3 i—=F

12
e Z Z —> Y,
x > S sy
: Weight Weight — P

ar Dy array
W K

Figure 1-6. Two-Layer Neural Network

special class, called nonrecurrent or feedforward networks, is of
considerable interest and is widely applied.

More general networks that do contain feedback connections are
said to be recurrent. Nonrecurrent networks have no memory;
their output is solely determined by the current inputs and thé
values of the weights. In some configurations, recurrent networks
recirculate previous outputs back to inputs; hence, their output is
determined both by their current input and their previous outputs.
For this reason recurrent networks can exhibit properties very
similar to short-term memory in humans in that the state of the
network outputs depends in part upon their previous inputs.

TERMINOLOGY, NOTATION, AND
REPRESENTATION OF ARTIFICIAL
NEURAL NETWORKS

Unfortunately, there are neither published standards nor general
agreement among authors regarding terms, notation, and the

Tundamentals of Artdflclal Neural Networks 21

graphical representations for artificial neural networks. Identical
petwork paradigms can appear entirely differently when presented
by different authors. In this book, the most common and self-
iencriptive terms have been selected and used consistently.

Terminology

Many authors avoid the term “neuron’” when referring to the arti-
flcial neuron, recognizing that it is a crude approximation of its
hiological model. This book uses the terms “neuron,”’ ‘‘cell,” and
‘unit’’ interchangeably as shorthand for “‘artificial neuron,” as
(hese words are succinct and self-explanatory.

Notation: Differential Equations versus
Difference Equations

| carning algorithms, like artificial neural networks in general, can
he presented in either differential-equation or difference-equation
form. The differential-equation representation assumes that the
processes are continuous, operating much like a large analog net-
work. Viewing the biological system at 2 microscopic level, this is
not true; the activation level of a biological neuron is determined
Iy the average rate at which it emits discrete action potential pulses
Jown its axon. This average rate is commonly treated as an analog
(uantity, but it is important to remember the underlying reality.

If one wishes to simulate artificial neural networks on an analog
computer, differential-equation representations are highly desir-
able. However, most work today is being done on digital comput-
crs, making the difference-equation form most appropriate, as
these equations can be converted easily into computer programs.
l'or this reason, the difference-equation representation is used
throughout this volume.

Representation

The literature shows little agreement about the way to count the
number of layers in a network. Figure 1-6 shows that a multilayer

22 Neural Computing: Theory and Practice

network consists of alternating sets of neurons and wceights. As
previously discussed in connection with Figure 1-5, the input layer

does nO summation; these neurons serve only as fan-out points to
the first set of weights and do not affect the computational capabil-
ity of the network. For this reason, the first layer is not included in
the layer count and a network such as that shown in Figure 1-6 is
referred tO 4s 4 two-layer network, as only two layers are perform-
ing the computation. Also, the weights of a layer are assumed to be
associated with the neurons that follow them. Therefore, a layer
consists Of a set of weights and the subsequent neurons that sum
the signals they carry.

TRAINING OF ARTIFICIAL NEURAL
NETWORKS

Of all of the interesting characteristics of artificial neural net-
works, NOM¢ captures the imagination like their ability to learn.
Their training shows so many parallels to the intellectual develop-
ment of human beings that it may seem that we have achieved a
fundamental understanding of this process. The cuphoria should
be tempered with caution; learning in artificial neural networks is
limited, and many difficult problems remain to be solved before it
can be determined if we are even on the right track. Nevertheless
impressive demonstrations have been performed, such as Srf:ji
nowski's NctTalk (see Chapter 3), and many other practical appli-
cations are emerging.

Objective of Training

A network is trained so that application of a set of inputs produces
the desired (or at least consistent) set of outputs. Each such input
(or output) sctis referred to as a vector. Training is accomplished
by sequentially applying input vectors, while adjusting network
weights according (o a predetermined procedure. During training,
the network weights gradually converge to values such that each
input vector produces the desired output vector.

Fundamentals of Artificial Neural Networks 23

pervised Training

Maining algorithms are categorized as supervised and unsuper-

Vised, Supervised training requires the pairing of each input vector
with a target vector representing the desired output; together these
ae called a training pair. Usually a network is trained over a
Mumber of such training pairs. An input vector is applied, the
imitput of the network is calculated and compared to the corre-
aponding target vector, and the difference (error) is fed back
through the network and weights are changed according to an
#lgorithm that tends to minimize the error. The vectors of the
Iniining set are applied sequentially, and errors are calculated and
welghts adjusted for each vector, until the error for the entire
imining set is at an acceptably low level.

{/nsupervised Training

Despite many application successes, supervised training has been
(riticized as being biologically implausible; it is difficult to con-
(cive of a training mechanism in the brain that compares desired
and actual outputs, feeding processed corrections back through
the network. If this were the brain’s mechanism, where do the
desired output patterns come from? How could the brain of an
infant accomplish the self-organization that has been proven to
cxist in early development? Unsupervised training is a far more
plausible model of learning in the biological system. Developed by
Kohonen (1984) and many others, it requires no target vector for
the outputs, and hence, no comparisons to predetermined ideal
responses. The training set consists solely of input vectors. The
(raining algorithm modifies network weights to produce output
vectors that are consistent; that is, both application of one of the
(raining vectors or application of a vector that is sufficiently simi-
Lar to it will produce the same pattern of outputs. The training
process, therefore, extracts the statistical properties of the training
set and groups similar vectors into classes. Applying a vector from
4 given class to the input will produce a specific output vector, but
there is no way to determine prior to training which specific out-
put pattern will be produced by a given input vector class. Hence,

21 Neural Computing: Theory and Practlee

the outputs of such a network must generally be transformed into
a comprehensible form subsequent to the training process. This
does not represent a serious problem. It is usually a simple matter

to identify the input-output relationships established by the net-
work.

Training Algorithms

Most of today’s training algorithms have evolved from the con-
cepts‘of D. O. Hebb (1961). He proposed a model for unsupervised
learning in which the synaptic strength (weight) was increased if

both the source and destination neuron were activated. In this way,

often-used paths in the network are strengthened, and the phe-
nomena of habit and learning through repetition are explained.

An artificial neural network using Hebbian learning will increase
its network weights according to the product of the excitation
levels of the source and destination neurons. In symbols:

win+)=wyn)+«o OUT,0UT,

where

w,(n) = the value of a weight from neuron 7 to neuron i prior

to adjustment
wy(n + 1) = the value of a weight from neuron 7 to neuron J after
adjustment
a = the learning-rate coefficient
OUT, = the output of neuron 7 and input to neuron j§
OUT, = the output of neuron j

Networks have been constructed that use Hebbian learning;
however, more effective training algorithms have been developed
over the past 20 years. In particular the work of Rosenblatt (1962),
Widrow (1959), Widrow and Hoff (1960), and many others devel-
oped supervised learning algorithms, producing networks that
learned a broader range of input patterns, and at higher learning
rates, than could be accomplished using simple Hebbian learning.

There are a tremendous variety of training algorithms in use

Fundamentals of Actificial Neural Networks 25

todiy; a book Lurger than this one would be required to give this
tople a complete treatment. To deal with this diverse subject in an
organized if not exhaustive fashion, each of the chapters that fol-
low presents the detailed training algorithms for the paradigm un-
ter consideration. In addition, Appendix C gives a general over-
view that is somewhat wider though not as deep. It presents the
historical context of training methods, their general taxonomy,
and certain of their advantages and limitations. This will, of neces-
sy, repeat some of the material from the text, but the broadened
perspective should justify the repetition.

PROLOGUE

I the chapters that follow some of the most important network
vonligurations and their training algorithms are presented and ana-
lyzcd. These paradigms represent a cross section of the art, both
past and present. If carefully studied, many other paradigms will
be seen to be easily understood modifications. New developments
are generally evolutionary rather than revolutionary, so under-
stinding the paradigms in this book will enhance one’s ability to
lollow the progress of this rapidly moving field.

The emphasis of the presentation is intuitive and algorithmic
rather than mathematical. It is more inclined toward the user of
artificial neural networks rather than toward the theorist; there-
lore, enough information is given to allow the reader to under-
stand the fundamental ideas. Also, one who knows computer pro-
pramming should be able to implement each of the networks.
Detailed derivations and complicated mathematics have been
omitted unless they bear directly upon network implementation.
For the more analytical reader, references are provided to books
and papers that are more rigorous and complete.

References

Girossberg, S. 1973, Contour enhancement, short-term memory, and con-
sistencies in reverberating neural networks. Studies in Applied Math-
ematics 52:217, 257.

20 Newral Computing: Theory and Practlce

Hebb, D OL 1901, Oreanization of bebavior. New York: Science Ldi-
tions.

Kohonen, 1. 1984, Self-organization and associative memory. Series in
Information Sciences, vol. 8. Berlin: Springer Verlag.)

Rosenblatt, F. 1962, Principles of neurodynamics. New York: Spartan
Books.

Widrow, B. 1959. Adaptive sampled-data systems, a statistical theory of
adaptation. 1959 IRE WESCON Convention Record, part 4, pp. 88—
91. New York: Institute of Radio Engineers.

Widrow, B., and Hoff, M. 1960. Adaptive switching circuits. 71960 IRE

WESCON Convention Record, pp. 96-104. New York: Institute of
Radio Engincers.

2

Perceptrons

PERCEPTRONS AND THE EARLY DAYS OF
ARTIFICIAL NEURAL NETWORKS

I'he science of artificial neural networks made its first significant
appearance in the 1940s. Researchers desiring to duplicate the
functions of the human brain developed simple hardware (and
later software) models of the biological neuron and its intercon-
nection system. As the neurophysiologists gradually gained an im-
proved understanding of the human neural system, these early
Mlempts were seen to be gross approximations. Still, impressive
results were achieved that encouraged further research and result-
cd in networks of greater sophistication.

McCulloch and Pitts (1943) published the first systematic study
ol aurtificial neural networks. In later work (Pitts and McCulloch
1917), they explored network paradigms for pattern recognition
despite translation and rotation. Much of their work involved the
simple neuron model shown in Figure 2-1. The I unit multiplies
cach input x by a weight w, and sums the weighted inputs. If this
sum is greater than a predetermined threshold, the output is one;
otherwise it is zero. These systems (and their many variations)
collectively have been called perceptrons. In general, they consist
of a single layer of artificial neurons connected by weights to a set
ol inputs (see Figure 2-2), although more complicated networks
bear the same name.

27

Z8 Neural Computing: Theory and Practice

» —— THRES :
WY ‘ QESHOLD

e N E Z I p=>0ut

Figure 2-1. Perceptron Neuron

In the 1960s, perceptrons created a great deal of interest and
optimism. Rosenblatt (1962) proved a remarkable theorem about
perceptron learning (explained below). Widrow (Widrow 1961,
1963; Widrow and Angell 1962; Widrow and Hoff 1960) made a
number of convincing demonstrations of perceptron-like systems,
and researchers throughout the world were eagerly exploring the
potential of these systems. The initial euphoria was replaced by
disillusionment as perceptrons were found to fail at certain simple
learning tasks. Minsky (Minsky and Papert 1969) analyzed this
problem with great rigor and proved that there are severe restric-
tions on what a single-layer perceptron can represent, and hence,
on what it can learn. Because there were no techniques known at
that time for training multilayer networks, researchers turned to

1 = uul,

Figure 2-2. Multioutput Perceptron

I ouT,

Perceptrons 29

more promising arcas, and artificial ncural network research went
(o near eclipse. The recent discovery of training methods for
multilayer networks has, more than any other factor, been respon-
sible for the resurgence of interest and research effort.

Minsky’s work may have dampened the ardor of the perceptron
enthusiasts, but it provided a period for needed consolidation and
development of the underlying theory. It is important to note that
Minsky's analysis has not been refuted; it remains an important
work and must be studied if the errors of the 1960s are not to be
repeated.

Despite the limitations of perceptrons, they have been extensive-
ly studied (if not widely used). Their theory is the foundation for
many other forms of artificial neural networks and they demon-
strate important principles. For these reasons, they are a logical
starting point for a study of artificial neural networks.

PERCEPTRON REPRESENTATION

I'ie proof of the perceptron learning theorem (Rosenblatt 1962)
demonstrated that a perceptron could learn anything it could rep-
resent. It is important to distinguish between representation and
lcarning. Representation refers to the ability of a perceptron (or
other network) to simulate a specified function. Learning requires
(he existence of a systematic procedure for adjusting the network
weights to produce that function.

To illustrate the representation problem, suppose we have a st
of flash cards bearing the numerals 0 through 9. Suppose also that
we have a hypothetical machine that is capable of distinguishing
ihe odd-numbered cards from the even-numbered ones, lighting an
indicator on its panel when shown an odd-numbered card (see
ligure 2-3), Can such a machine be represented by a perceptron?
I'hat is, can a perceptron be constructed and its weights adjusted
(regardless of how it is done) so that it has the same discriminatory
capability? If so, we say that the perceptron can represent the
desired machine, We shall see that the single-layer perceptron is
seriously limited in its representational ability; there are many sim-
ple machines that the perceptron cannot represent no matter how
the weights are adjusted.

10 Neural Computlng: Theory and Practlce
o]
\ /
R \ a
I e)
/
2]

Figure 2-3. Image-Recognition System

anD

Exclusive-Or Problem

One of Minsky’s more discouraging results shows that a single-
layer perceptron cannot simulate a simple exclusive-or function.
This function accepts two inputs that can be only zero or one. It
produces an output of one only if either input is one (but not
both). The problem can be shown by considering a single-laver,
single-neuron system with two inputs as shown in Figure 2-4. Call-
ing one input x and the other y, all of their possible combinations
comprise four points on the x-y plane shown in Figure 2-5. For
example, the points x=0 and y =0 are labeled as point A, in the
figure. Table 2-1 shows the desired relationships between inputs
and outputs, where those input combinations that should produce
4 zero output are labeled A, and A,; those producing a one are
labeled B, and B,.

In the network of Figure 2-4, function F is a simple threshold
producing a zero for QUT when NET is below 0.5 and a one when

guT

Figure 2-4. Single-Neuron System

Perceptrons 31

X —=>

Figure 2-5. Exclusive-Or Problem as Points on the X-Y Plane

it is equal to or above it. The neuron then performs the following
cileulation:

NET =xw, +yw, (2-1)

No combination of values for two weights w, and w, will
produce the input/output relationship of Table 2-1. To understand
this limitation, consider NET to be held constant at the threshold
vitlue of 0.5. Equation 2-2 describes the network in this case. This
cquation is linear in x and y; that is, all values for x and y that
satisfy this equation will fall on some straight line on the x-y
pline,

xw, + yw, =0.5 (2-2)

Table 2-1. Exclusive-Or Truth Table

Point x Value yValue Desired Qutput

Ay 0 0 0
B, 1 0 1
B, 0 1 1
A, 1 1 0

32 Neural Computing: Theory and Practice

Any input values for x and y on this line will produce the thresh-
old value of 0.5 for NET. Input values on one side of the line will
produce NET greater than the threshold, hence OUT = 1; values on
the other side will produce NET less than the threshold value
making OUT = 0. Changing the values of w,, w,, and the threshold
will change the slope and position of the line. For the network to
produce the exclusive-or function of Table 2-1 it is necessary to
place the line so that all of the As are on one side and all of the Bs
are on the other. Try drawing such a line on Figure 2-5; it cannot be
done. This means that no matter what values are assigned to the
weights and the threshold, this network is unable to produce the
input/output relationship required to represent the exclusive-or
function.

Looking at the problem from a slightly different perspective,
consider NET to be a surface floating above the x—y plane. Each
point on this surface is directly above a corresponding point in the
Xx—y plane by a distance equal to the value of NET at that point. It
can be shown that the slope of this NET surface is constant over
the entire x—y plane. All points that produce a value of NET equal
to the threshold value will project up to a constant level on the
NET plane (see Figure 2-6). Clearly, all points on one side of the
threshold line will project up to values of NET higher than the
threshold and points on the other side must result in lower values
of NET. Thus, the threshold line subdivides the x—y plane into two

NET
NET SURFACE

L CONSTANT LINE

ya ;s

Figure 2-6. Perceptron NET Plane

Perceptrons 33

replons, All points on one side of the threshold line produce a one
for OU'E all points on the other side produce a zero.

Lincar Separability

We have seen that there is no way to draw a straight line subdivid-
ing the a—y plane so that the exclusive-or function is represented.
(Infortunately, this is not an isolated example; there exists a large
vluss of functions that cannot be represented by a single-layer net-
work. These funictions are said to be linearly inseparable, and they
wet definite bounds on the capabilities of single-layer networks.

Lincar separability limits single-layer networks to classification
problems in which the sets of points (corresponding to input val-
ues) can be separated geometrically. For our two-input case, the
separator is a straight line. For three inputs, the separation is per-
formed by a flat plane cutting through the resulting three-dimen-
sional space. For four or more inputs, visualization breaks down
and we must mentally generalize to a space of » dimensions divid-
cd by a2 “hyperplane,”’ a geometrical object that subdivides a space
ol four or more dimensions.

Because linear separability limits the representational ability of a
perceptron, it is important to know if a given function is linearly
separable. Unfortunately, there is no simple way to make this deter-
mination if the number of variables is large.

A neuron with # binary inputs can have 2" different input pat-
terns, consisting of ones and zeros. Because each input pattern can
produce two different binary outputs, one and zero, there are 22°
different functions of n variables.

As shown in Table 2-2, the probability of any randomly selected
function being linearly separable becomes vanishingly small with
cven a modest number of variables. For this reason single-layer
perceptrons are, in practice, limited to simple problems.

Overcoming the Linear Separability
Limitation

By the late 1960s the linear separability problem was well under-
stood. Tt was also known that this serious representational limita-

44 Neural Computing: Theory and Practlce

Table 2-2. Lincarly Separable Functions

n 22" Number of Linearly Separable Functions
1 4 4
2 16 14
3 256 104
4 65,536 1,882
5 43x10° 94,572
6 1.8 x 1012 5,028,134

Source: R. O, Windner, Single-stage logic, Paper presented at the AIEE
Fall General Meeting (1960).

tion of single-layer networks could be overcome by adding more
lavers. For example, two-layer networks may be formed by cascad-
ing two single-layer networks. These can perform more general
classifications, separating those points that are contained in con-
vex open or closed regions. A convex region is one in which any
two points in the region can be joined by a straight line that does
not leave the region. A closed region is one in which all points are
contained within a boundary (e.g., a circle). An open region has
some points that are outside any defined boundary (e.g., the re-
gion between two parallel lines). For examples of convex open and
closed regions, see Figure 2-7.

To understand the convexity limitation, consider a simple two-
layer network with two inputs going to two neurons in the first
layer, both feeding a single neuron in layer 2 (see Figure 2-8).
Assume that the threshold of the output neuron is set at 0.75 and
its weights are both set to 0.5. In this case, an output of one is
required from both layer 1 neurons to exceed the threshold and to
produce a one on the output. Thus, the output neuron performs a
logical “‘and’’ function. In Figure 2-8 it is assumed that each neu-
ron in layer 1 subdivides the x—y plane, one producing an output
of one for inputs below the upper line and the other producing an
output of one for inputs above the lower line. Figure 2-8 shows the
result of the double subdivision, where the OUT of the layer 2
neuron is one only over a V-shaped region. Similarly, three neurons
can be used in the input layer, further subdividing the plane, creat-

Perceptrons A8

CHINVE X REGIHINS
D]EN

CLOSED

Figure 2-7. Convex Regions, Closed and Open

Ing a triangle-shaped region. By including enough neurons in the
input layer, a convex polygon of any desired shape can be formed.
Because they are formed by the “and’ of regions defined by
straight lines, all such polygons are convex, hence only convex
regions can be enclosed. Points not comprising a convex region

LAYER 2 NEURON—
IS 1 ONLY IN
s, THIS REGION

ligure 2-8. Convex Decision Region Produced by Two-Layer

Per

3o Nearal Computing: Theory and Practlce

cannot be separated from all other points in the plane by a two-
layer network.

The layer 2 neuron is not limited to the “‘and’ function; it can
produce many other functions if the weights and threshold are
suitably chosen. For example, it could be so arranged that either of
the two neurons in layer 1 having a one for its OUT level causes the
OUT levl of the layer 2 neuron to be one, thereby forming a
logical “‘or’’ There are 16 binary functions of two variables. If the
weights and threshold are appropriately selected, a two-input neu-
ron can simulate 14 of them (all but the exclusive-or and exclusive-
nor),

Inputs need not be binary. A vector of continuous inputs can
represent a point anywhere on the x—y plane. In this case, we are
concerned with a network’s ability to subdivide the plane into
continuous regions rather than separating sets of discrete points.
For all functions, however, linear separability shows that the out-
put of a layer 2 neuron is one only over a portion of the x—y plane
enclosed by a convex polygon. Thus, to separate regions P and Q,
all points in P must be within a convex polygon that contains no
points of Q (or vice versa).

A three-layer network is still more general; its classification ca-
pability is limited only by the number of artificial neurons and
weights. There are no convexity constraints; the layer 3 neuron
now receives as input a group of convex polygons, and the logical
combination of that need not be convex. Figure 2-9 illustrates a
case in which two triangles, 4 and B, are combined by the function
“A and not B’ thereby defining 2 nonconvex region. As neurons
and weights are added, the number of sides of the polygons can
increase without limit. This makes it possible to enclose a region
of any shape to any desired degree of accuracy. In addition, not all
of the layer 2 output regions need to intersect. It is possible, there-
fore, to enclose multiple regions, convex and nonconvex, produc-
ing an output of one whenever the input vector is in any of them.

Despite carly recognition of the power of multilayer networks,
for many years there was no theoretically sound training algorithm
for adjusting their weights. In the chapters that follow we explore
multilayer training algorithms in detail, but for now it is enough to
understand the problem and to realize that research has produced
solutions.

Perceptrons 37

NON-CONVEX REGION A AND NOT B

TRIANGLE
LB

[RIANGLE

A \

LAYER 1 LAYER 2
xl
LAYER 3
X, —> —> Y
><3

ligure 2-9. Concave Decision Region Formed by Intersection of
Iwo Convex Regions

Storage Efficiency

I'here are serious questions about the storage efficiency of the
perceptron (and other artificial neural networks) relative to con-
ventional computer memory and retrieval methods. For example,
it would be possible to store all of the input patterns in a comput-
¢r's memory along with classification bits. The computer would
then search for the desired pattern and respond with its classifica-
tion. Various well-known strategies could be employed to acceler-
ale the search. If an exact match were not found, nearest-neighbor
criteria could be used to return the closest fit.

The number of bits required to store the same information in the
perceptron weights can be substantially smaller than the conven-
tional computer memory method, if the nature of the patterns
allows a compact representation. However, Minsky (Minsky and
Papert 1969) has shown pathological examples in which the num-
her of bits required to represent the weights grows faster than
cxponentially with the size of the problem. In these cases, memory
requirements quickly expand to impractical levels as the problem
size increases. If, as he conjectures, this situation is not the excep-
tion, perceptrons could often be limited to small problems. How

AL Neural Computiog: Theory and Practice

common are such infeasible pattern sets? ‘This remains an open
question that applies to all neural networks. Finding an answer is
one of the critical areas for neural network research.

PERCEPTRON LEARNING

The artificial neural network’s learning ability is its most intrigu-
ing property. Like the biclogical systems they model, these net-
works modify themselves as a result of experience to produce a
more desirable behavior pattern.

Using the linear-separability criterion it is possible to decide
whether or not a single-layer network can represent a desired func-
tion. Even if the answer is “Yes,” it does us little good if we have
no way to find the needed values for weights and thresholds. If the
network is to be of practical value, we need a systematic method
(an algorithm) for computing the values. Rosenblatt (1962) provid-
ed this in the perceptron training algorithm, along with his proof
that a perceptron can be trained to any function it can represent.

Learning can be either supervised or unsupervised. Supervised
learning requires an external “‘teacher’ that evaluates the behavior
of the system and directs the subsequent modifications. Unsuper-
vised learning, which is covered in the chapters that follow, re-
quires no teacher; the network self-organizes to produce the de-
sired changes. Perceptron learning is of the supervised type.

The perceptron training algorithm can be implemented on a
digital computer or other electronic hardware and the network
becomes, in a sense, seIf—adjusting. For this reason the act of ad-
justing the weights is commonly called “‘training”’ and the net-
work is said to “‘learn.’” Rosenblatt’s proof was a major milestone
and provided a great impetus to research in the field. Today, in one
form or another, elements of the perceptron training algorithm are
found in many modern network paradigms.

PERCEPTRON TRAINING ALGORITHM

A perceptron is trained by presenting a set of palterns to its input,
one at a time, and adjusting the weights until the desired output
occurs for each of them, Suppose that the input patterns are on

Perceptrons 39

Hush cards. Lach flash card can be marked into squares, and c;%ch
Mjunre can provide an input to the perceptron. If a square has a line
through it, its output is one; if not, its output is zero. The set of
sunres ona card represents the set of ones and zeros presented as
iputs to the perceptron. The object is to train the perceptron so
that applying a set of inputs representing an odd number always
turns the light on, while it remains off for even numbers.

Flgure 2-10 shows such a perceptron configuration. Suppose
that the vector X represents the flash card pattern to be recog-
nlzed, Lach component (square) of X, (x,, x,, . . ., x,), is multi-
plicd by its correspeonding component of weight vector W, (w0, w,,

, t1,). These products are summed. If the sum exceeds a t.hresh—
old 0, the output of the neuron Y is one (and the light is qn),
utherwise it is zero. As we have seen in Chapter 1, this operation
iy be represented compactly in vector form as ¥ = XW, followed
hy the thresholding operation.

I train the network, a pattern X is applied to the input and the
output Y is calculated. If ¥ is correct, nothing is changed. Howev-

i — 1
‘ ﬁ
| 11 W)
) 1 o
\3‘/ ::i i We _> \J
\ i

W

7
1 Yo
0 Wy
o

wm

Figure 2-10. Percepiron Image-Recognition System

40 Neural Computing: Theory and Practice

cr, if the output is incorrect, the weights connecting to inputs
enhancing this erroneous result are modified in value 1o reduce the
€ITOr.

To see how this is accomplished, assume that a flash card bearing
the number three is input to the system and the output ¥ is one
(indicating odd). Since this is the correct response, no weights are
changed. If, however, a flash card with the number four is input to
the perceptron and the output Y is one (odd), the weights that
connect to inputs that are one must be decreased, as these are
tending to produce an incorrect result. Similarly, if a card with the
number three produces an output of zero, those weights connect-
ing to inputs that are one must be increased, thereby tending to
correct this erroneous condition,

This training method can be summarized:

L. Apply an input pattern and calculate the output Y.
2,
a. If the output is correct, go to step 1;
b. If the output is incorrect, and is zero, add each input to its
corresponding weight; or
c. If the output is incorrect and is one, subtract each input
from its corresponding weight.
3. Gotostep 1.

In a finite number of steps the network will learn to separate the
cards into even and odd categories, provided that the sets of fig-
ures are linearly separable. That is, for all odd cards the output will
be higher than the threshold, and for all even cards it will be below
it. Note that this training is global; that is, the network learns over
the entire set of cards. This raises questions about how the set
should be presented to minimize the training time. Should the set
be applied sequentially, over and over, or should cards be selected
at random? There is little theory to guide this determination.

The Delta Rule

An important generalization of the perceptron training algorithm,
called the delta rule, extends this technique to continuous inputs
and outputs. To see how it was developed, note that step 2 of the

Perceptrons i1

perceptron training algorithm may be restated and generalized by
Introducing a term &, which is the difference between the desired
or target output 7 and the actual output A. In symbols,

6=(T-4) (2-3)

I'he case in which 8 =0 corresponds to step 2a, in which the
output is correct and nothing is done. Step 2b corresponds to 6> 0,
while step 2¢ corresponds to §<0.

In any of these cases, the perceptron training algorithm is satis-
ficd if 8 is multiplied by the value of each input x; and this product
is added to the corresponding weight. To generalize this, a “‘learn-
ing rate”” coefficient y multiplies the § x; product to allow control
of the average size of weight changes.

Symbolically,

A=nbx (2-4)
wn+1)=w(n)+ A, (2-5)

where
A, = the correction associated with the ith input x,
wyn + 1) = the value of weight 7 after adjustment
w,(n) = the value of weight 7 before adjustment

The delta rule modifies weights appropriately for target and ac-
tual outputs of either polarity and for both continuous and binary
inputs and outputs. These characteristics have opened up a wealth
ol new applications.

I’roblems with the Perceptron Training
Algorithm

It may be difficult to determine if the caveat regarding linear sepa-
rability is satisfied for the particular training set at hand. Further-
more, in many real-world situations the inputs are often time-
virying and may be separable at one time and not at another. Also,
(here is no statement in the proof of the perceptron learning algo-
rithm that indicates how many steps will be required to train the

42 Neural Computing: Theory and Practice

network. It is small consolation to know that training will only
take a finite number of steps if the time it takes is measured in
geological units. Furthermore, there is no proof that the percep-
tron training algorithm is faster than simply trying all possible
adjustments of the weights; in some cases this brute-force ap-
proach may be superior.

These questions have never been satisfactorily answered, and
they are certainly related to the nature of the set being learned.
They are asked in various forms in the chapters that follow, as they
apply to other network paradigms. Generally, the answers are no
more satisfactory for more modern networks than they are for the
perceptrons. These problems represent important areas of current
research.

References

McCulloch, W. W., and Pitts, W. 1943. A logical calculus of the ideas
imminent in nervous activity. Bulletin of Mathematical Biophysics
5:115-33.

Minsky, M. L., and Papert S. 1969. Percepirons. Cambridge, MA: MIT
Press.

Pitts, W., and McCulloch, W. W. 1947. How we know universals. Bulletin
of Mathematical Biophysics 9:127-47.

Rosenblatt, F. 1962, Principles of neurodynamics. New York: Spartan
Books.

Widrow, B. 1961. The speed of adaptation in adaptive control systems,
paper #1933-61. American Rocket Society Guidance Control and
Navigation Conference.,

_. 1963, A statistical theory of adaptation. Adaptive control systems.
New York: Pergamon Press.

Widrow, B., and Angell, J. B. 1962. Reliable, trainable networks for com-
puting and control. Aerospace Engineering 21:78-123.

Widrow, B., and Hoff, M. E. 1960. Adaprtive switching circuits. 1960 IRE
WESCON Convention Record, part 4, pp. 96—-104. New York: Insti-
tute of Radio Engineers.

3

Backpropagation

INTRODUCTION TO BACKPROPAGATION

lor many years there was no theoretically sound algorithm for
(raining multilayer artificial neural networks. Since single-layer
networks proved severely limited in what they could represent
(henee, in what they could learn), the entire field went into virtual
celipse.

T'he invention of the backpropagation algorithm has played a
large part in the resurgence of interest in artificial neural networks.
hackpropagation is a systematic method for training multilayer
artificial neural networks. It has 2 mathematical foundation that is
strong if not highly practical. Despite its limitations, backpropaga-
tlon has dramatically expanded the range of problems to which
Artificial neural networks can be applied, and it has generated
many successful demonstrations of its power.

Backpropagation has an interesting history. Rumelhart, Hinton,
and Williams (1986) presented a clear and concise description of
the backpropagation algorithm. No sooner was this work pub-
lished than Parker (1982) was shown to have anticipated Ru-
melhart’s work. Shortly after this, Werbos (1974) was found to
have described the method still earlicr. Rumelhart and Parker
could have saved a great deal of effort if they had been aware of
Werbos's work, Although similar duplication of effort is found in
virtually every scientific discipline, in artificial neural networks

43

a1 Neural Computing: Theory and Practice

the problem is particularly severe due to the interdisciplinary na-
ture of the subject. Neural-network research is published in books
and journals from such diverse fields that even the most diligent
researcher is hard pressed to remain aware of all significant work.

THE BACKPROPAGATION TRAINING
ALGORITHM

Network Configurations

The Neuron

Figure 3-1 shows the neuron used as the fundamental building
block for backpropagation networks. A set of inputs is applied,
cither from the outside or from a previous layer. Each of these is
multiplied by a weight, and the products are summed. This sum-
mation of products is termed NET and must be calculated for each
neuron in the network. After NET is calculated, an activation func-
tion F is applied to modify it, thereby producing the signal OUT.

-Figure 3-2 shows the activation function usually used for back-
propagation.

OUT = 1/(1 + eNeT) (3-1)

(3} e
| " L ouT

. >
T

NET

NIT = o % + o,w,+ ..t0, W, =» O W,

1]

FONET?

Figure 3-1. Artificial Neuron with Activation Function

Backpropagation 18

tan | ‘l ‘ e

r//,//
s /{
,"7/
0 NET—»
OUT = FCNETY = L/¢1 + e ™D
. _Buu“r

F(NETS = Jwr OuUTCL-0uUT

Figure 3-2. Sigmoidal Activation Function

As shown by Equation 3-2, this function, called a sigmoid, is desir-
Able in that it has a simple derivative, a fact we use in implement-
ing the backpropagation algorithm.

9 OUT , /e
- QUT(1 - OUT oy 3-2
3 NET (» 2

s -7 MG

Sometimes called a logistic, or simply a squashing function, the
sigmoid compresses the range of NET so that OUT lies between
sero and one. As discussed previously, multilayer networks have
preater representational power than single-layer networks only if a
nonlinearity is introduced. The squashing function produces the
needed nonlinearity.

There are many functions that might be used; the backpropaga-
tion algorithm requires only that the function be everywheie dif-
(crentiable. The sigmoid satisfies this requirement. It has the addi-
(ional advantage of providing a form of automatic gain control. For
small signals (NET near zero) the slope of the input/output curve is
steep, producing high gain. As the magnitude of the signal be-
comes greater, the gain decreases. In this way large signals can be
accommodated by the network without saturation, while small
signals are allowed to pass through without excessive attenuation.

40 Neural Computing: Theory and Practiee

T'he Multilayer Network

Figure 3-3 shows a multilayer network suitable for training with
backpropagation. (The figure has been simplified for clarity.) The
first set of neurons (connecting to the inputs) serve only as distri-
bution points; they perform no input summation. The input signal
is simply passed through to the weights on their outputs. Each
neuron in subsequent layers produces NET and OUT signals as
described above.

The literature is inconsistent in defining the number of layers in
these networks. Some authors refer to the number of layers of
neurons (including the nonsumming input layer), others to the
Jayers of weights. Because the latter definition is more functionally
descriptive, it is used throughout this book. By this definition, the
network of Figure 3-3 is considered to consist of two layers. Also, a
neuren is associated with the set of weights that connects to its
input. Thus, the weights in layer 1 terminate on the ncurons of
layer 1. The input or distribution layer is designated layer 0.

Backpropagation can be applied to networks with any number
of layers; however, only two layers of weights are needed to dem-
onstrate the algorithm. At this point in the discussion, only feed-
forward networks are considered. It is quite possible to apply

INPUT HIDDEN DUTPUT
LAYER LAYER LAYER
| J ke

_ W

i o

o [&— TARGET,

< TARGET

o
a

<— TARGET,

FRROR <—

Figure 3-3. ‘Two-Layer Backpropagation Network

Backpropagation a7

huckpropagation to networks with feedback connections; these
fre discussed later in this chapter.

An Overview of Training

I'he objective of training the network is to adjust the weights so
(hat application of a set of inputs produces the desired set of
outputs. For reasons of brevity, these input-output sets can be
referred to as vectors. Training assumes that each input vector is
paired with a target vector representing the desired output; togeth-
or these are called a training paiv. Usually, a network is trained
over a4 number of training pairs. For example, the input part of a
(raining pair might consist of a pattern of ones and zeros represent-
ing, a binary image of a letter of the alphabet. Figure 3-4 shows a set
of inputs for the letter A drawn on a grid. If a linc passes through a
square, the corresponding neuron’s input is one; otherwise, that
neuron’s input is zero. The output might be a number that repre-
wents the letter A, or perhaps another set of ones and zeros that
could be used to produce an output pattern. If one wished to train
ihe network to recognize all the letters of the alphabet, 26 training
pairs would be required. This group of training pairs is called a
(raining set.

Before starting the training process, all of the weights must be
initialized to small random numbers. This ensures that the net-
work is not saturated by large values of the weights, and prevents
certain other training pathologies. For example, if the weights all
start at equal values and the desired performance requires unequal
values, the network will not learn.

Training the backpropagation network requires the steps that
follow:

1. Select the next training pair from the training set; apply the
input vector to the network input.

2. Calculate the output of the network.

3. Calculate the error between the network output and the de-
sired output (the target vector from the training pair).

4. Adjust the weights of the network in a way that minimizes
the error.

48 Neural Computing: Theory and Practice

Figure 3-4. Image Recognition

5. Repeat steps 1 through 4 for each vector in the training set
until the error for the entire set is acceptably low.

The operations required in steps 1 and 2 above are similar to the
wity in which the trained network will ultimately be used; that is,
an input vector is applied and the resulting output is calculated.
Calculations are performed on a layer-by-layer basis. Referring to
ligure 3-3, first the outputs of the neurons in layer j are calculated;
these are then used as inputs to layer &; the layer & neuron outputs:
are calculated and these constitute the network output vector.

In step 3, cach of the network outputs, labeled OUT in Figure
3-3, is subtracted from its corresponding component of the target
vector to produce an error. This error is used in step 4 to adjust the
weights of the network, where the polarity and magnitude of the
weight changes are determined by the training algorithm (see be-
low).

After ecnough repetitions of these four steps, the error between
actual outputs and target outputs should be reduced to an accepta-

Backpropagation 19

Ble value, and the network is said to be trained. At this point, the

network is used for recognition and weights are not changed.

It may be seen that steps 1 and 2 constitute 2 “forward pass’’ in
(hat the signal propagates from the network input to its output.
Steps 3 and 4 are a “‘reverse pass’’; here, the calculated error signal
propagates backward through the network where it is used to ad-
just weights. These two passes are NOw expanded and expressed in
1 somewhat more mathematical form.

lorward Pass

Steps 1 and 2 can be expressed in vector form as follows: an input
vector X is applied and an output vector Y is produced. The input-
target vector pair X and T comes from the training set. The calcula-
tion is performed on X to produce the output vector Y.

As we have seen, calculation in multilayer networks is done layer
Iy layer, starting at the layer nearest to the inputs. The NET value
ol cach neuron in the first layer is calculated as the weighted sum
ol its neuron’s inputs. The activation function F then “squashes”
NIiT to produce the OUT value for each neuron in that layer. Once
the set of outputs for a layer is found, it serves as input to the next
layer. The process is repeated, layer by layer, until the final set of
network outputs is produced.

This process can be stated succinctly in vector notation. The
weights between neurons can be considered to be a matrix W. For
example, the weight from neuron 8 in layer 2 to neuron 5 in layer 3
is designated w, ;. Rather than using the summation of products,
(the NET vector for a layer N may be expressed as the product of X
nd W. In vector notation N = XW. Applying the function F to the
NIT vector N, component by component, produces the output
vector O. Thus, for a given layer, the following expression de-
wcribes the calculation process:

O = F(XW) (3-3)

The output vector for one layer is the input vector for the next,
so calculating the outputs of the final layer requires the application
of Equation 3-3 to each layer, from the network’s input to its out-
put.

50 Neural Computing: Theory and Practice
Reverse Pass

Adjusting the Weights of the Output Layer. Because a target value
is available for each neuron in the output layer, adjusting the asso-
ciated weights is easily accomplished using a modification of the
delta rule presented in Chapter 2. Interior layers are referred to as
“hidden layers,’” as their outputs have no target values for compar-
ison,; hence, training is more complicated.

Figure 3-5 shows the training process for a single weight from
neuron p in the hidden layer j to neuron g in the output layer &.
The output of a neuron in layer % is subtracted from its target value
to produce an ERROR signal. This is multiplied by the derivative of
the squashing function [OUT(1—OUT)] calculated for that layer’s
neuron &, thereby producing the é value.

6=0UT(1-0UT) (Target—OUT) (3-4)

Then §é is multiplied by OUT from a neuron j, the source neuron
for the weight in question. This product is in turn multiplied by a
training rate coefficient » (typically 0.01 to 1.0) and the result is
added to the weight. An identical process is performed for each
weight proceeding from a neuron in the hidden layer to a neuron
in the output layer.

The following equations illustrate this calculation:

A wjﬁq,k =7 6(/,k OUT_D,‘;‘ (3_5)
wj)q.k(n + 1) = wpq.k(n) +A w,nq.fe (3_6)

where
w,, (n)=the value of a weight from neuron p in the hidden

layer to neuron g in the output layer at step # (be-
fore adjustment); note that the subscript & indicates

that the weight is associated with its destination

layer, a convention followed in this book
w,, (1 + 1)=value of the weight at step n + 1 (after adjustment)
0, = the value of 8 for neuron ¢ in the output layer &
OU'T,, = the value of OUT for neuron p in the hidden layer ;.

Backpropagation 51

Pl VISEING TN MEURDNG TN

HIDEN 1AL IUTEUT LAYLR
HIH\‘\ Wi = Rl N _} = | +
it JR ACCL IR D 3 TARGE lo
| (| ol

T (TRAINING RATED

Wogken+1

Figure 3-5. ‘Training a Weight in the Output Layer

Note that subscripts p and g refer to a specific neuron, whereas
subscripts j and & refer to a layer.

Adjusting the Weights of the Hidden Layers. Hidden layers have
no target vector, so the training process described above cannot be
used. This lack of a training target stymied efforts to train multilay-
¢r networks until backpropagation provided a workable algo-
rithm. Backpropagation trains the hidden layers by propagating
the output error back through the network layer by layer, adjusting
weights at each layer.

liquations 3-5 and 3-6 are used for all layers, both output and
hidden; however, for hidden layers § must be generated without
henefit of a target vector. Figure 3-6 shows how this is accom-
plished. First, 8 is calculated for each neuron in the output layer, as

52 Neural Computing: Theory and Practice

e
LAYER

R V[V\H,ILJ‘J HIDDEN
T: ()

Figure 3-6. Training a Weight in a Hidden Layer

in Equation 3-4. It is used to adjust the weights feeding into the
output layer, then it is propagated back through the same weights
to generate a value for § for each neuron in the first hidden layer.
Thesce values of & are used, in turn, to adjust the weights of this
hidden layer and, in a similar way, are propagated back to all pre-
ceding layers.

Consider a single neuron in the hidden layer just before the
output layer. In the forward pass, this neuron propagates its output
vitlue to neurons in the output layer through the interconnecting
weights. During training these weights operate in reverse, passing
the value of 6 from the output layer back to the hidden layer. Each
ol these weights is multiplied by the 6 value of the neuron to which
it connects in the output layer. The value of § needed for the
hidden-layer neuron is produced by summing all such products
and multiplying by the derivative of the squashing function:

8,,= OUT, (1 - OUT,) (Ea(,_,e wp,,,&) 37)
G

(See Vigure 3-6.) With 6 in hand, the weights feeding the first
hidden layer can be adjusted using Equations 3-5 and 3-6, modify-
ing indices to indicate the correct layers.

Backpropagation 53

lor cach neuron in a given hidden layer, s must be calculated,
and all weights associated with that layer must be adjusted. This is
fepeated, moving back toward the input layer by layer, until all
welghts are adjusted.

With vector notation, the operation of propagating the error
hack can be expressed much more compactly. Call the set of &s at
the output layer D, and the set of weights for the output layer the
array W, To arrive at D, the 6 vector for the hidden layer, the two
nteps that follow will suffice:

| Multiply the 6 vector of the output layer D, by the transpose
of the weight matrix connecting the hidden layer to the out-
put layer W'

2. Multiply each component of the resulting product by the
derivative of the squashing function for the corresponding
neuron in the hidden layer.

symbolically,
D,=D,W, $ [0, $ 1-0))] (3-8)

where, for the purposes of this book, the opcrator $ is defined to
indicate component-by-component multiplication of the two vec-
lors. O, is the output vector of layer j, and Iis a vector, all compo-
nents of which are 1.

Adding a Neuron Bias

In many cases it is desirable to provide each neuron with 2 traina-
ble bias. This offsets the origin of the logistic function, producing
an effect that is similar to adjusting the threshold of the perceptron
neuron, thereby permitting more rapid convergence of the training
process. This feature is easily incorporated into the training algo-
rithm; a weight connected to + 1 is added to each neuron. This
weight is trainable in the same way as all of the other weights,
except that the source is always + 1 instead of being the output of
A neuron in a previous layer.

54 Neural Computing: Theory and Practice

Momentum

Rumelhart, Hinton, and Williams (1986) describe a method for
improving the training time of the backpropagation algorithm,
while enhancing the stability of the process. Called momentum
the method involves adding a term to the weight adjustment that 1~:
proportional to the amount of the previous weight change. Once
an adjustment is made it is “‘remembered’’ and serves to modify all

subsequent weight adjustments. The adjustment equations are
modified to the following:

Aw,, (n+1)=ny (5%,@ OUT,) + alA w,, (1)] (3-9)

Wpge(+ 1) =w,, (1) + Aw,, (n+1) (3-10)

where «, the momentum coefficient, is commonly set to around
0.9.

Using the momentum method, the network tends to follow the
bottom of narrow gullies in the error surface (if they exist) rather
than crossing rapidly from side to side. This method seems to
work well on some problems, but it has little or negative effect on
others.

Sejnowski and Rosenberg (1987) describe a similar method

based on exponential smoothing that may prove superior in some
applications.

Aw,, (m+1)=adw,,(n)+(1-a) 6, OUT,, (3-11)

Then the weight change is computed:

wﬁq,k(n + 1) = wpq,le(n) +7 A w,f:q,k(n T I) (3-12)

where « is a smoothing coefficient in the range of 0.0 to 1.0. If « is
0.0, then smoothing is minimum; the entire weight adjustment
comes from the newly calculated change. If « is 1.0, the new
adjustment is ignored and the previous one is repeated. Between 0
and 1 is a region where the weight adjustment is smoothed by an
amount proportional to . Again u is the training-rate coefficient,
serving to adjust the size of the average weight change.

Backpropagation 55
ADVANCED ALGORITHMS

Muny rescarchers have devised improvements and extensions to
the basic backpropagation algorithm described above. The litera-
{ure is far too extensive to cover here. Furthermore, it is much too
carly for a full evaluation; some of these techniques may prove to
he fundamental, others may simply fade away. For reference, a few
ol the more promising developments are discussed in this section.

Parker (1987) describes a method for improving the speed of
convergence of the backpropagation algorithm. Called second-or-
ider backpropagation, it uses second derivatives to produce a
more accurate estimate of the correct weight change. Parker has
shown that the algorithm is optimal in the sense that using higher-
ihan-second-order derivatives will not improve the estimate. Com-
putational requirements are increased compared to first-order
hackpropagation, and more test results are needed to prove that
(he additional cost is justified.

Stornetta and Huberman (1987) describe a deceptively simple
method for improving the training characteristics of backpropaga-
lion networks. They point out that the conventional 0-to-1 dynam-
i¢ range of inputs and hidden neuron outputs is not optimum.
ecause the magnitude of a weight adjustment A), is propor-
tional to the output level of the neuron from which it originates
OLUT,;. a level of 0 results in no weight modification. With binary
(nput vectors, half the inputs, on the average, will be 0 and the
weights they connect to will not train! The solution lies in chang-
ing the input range to = 1/2 and adding a bias to the squashing
lunction to modify the neuron output range to =1/2. The new
squashing function is as follows:

OUT = — 1/2 + L/(e¥" + 1) (3-13)

Convergence times were reduced by an average of 30 to 50% with
(hese easily implemented changes. This is an example of the practi-
cal modifications that can bring substantial improvements in the
algorithm’s performance.

Pineda (1988) and Almeida (1987) have described methods for
applying backpropagation to recurrent networks, that is, networks
whose outputs feedback to inputs. They show that learning can

50 Neural Computing: Theory and Practice

occur very rapidly in such systems and that stability criteria are
casily satisfied.

APPLICATIONS

Backpropagation has been applied to a wide variety of research
applications; a few of these are described to demonstrate the pow-
er of this method.

NEC in Japan has announced recently that it has applied back-
propagation to a new optical-character-recognition system, there-
by improving accuracy to over 99%. This improvement was
achieved through a combination of conventional algorithms with a
backpropagation network providing additional verification.

Sejnowski and Rosenberg (1987) produced a spectacular success
with NetTalk, a system that converted printed English text into
highly intelligible speech. His tape recording of the training pro-
cess bore a strong resemblance to the sounds of a child at various
stages of learning to speak.

Burr (1987) has used backpropagation in machine recognition of
handwritten English words. The characters are normalized for
size, are placed on a grid, and projections are made of the lines
through the squares of the grid. These projections then form the
inputs to a backpropagation network. He reports accuracies of
99.7 % when used with a dictionary filter.

Cottrell, Munro, and Zipser (1987) report a successful image-
compression application in which images were represented with ¢
one hit per pixel, an eightfold improvement over the input data.

CAVEATS

Despite the many successful applications of backpropagation, it is
not a panacea. Most troublesome is the long, uncertain training
process. For complex problems it may require days or weeks to
train the network, and it may not train at all. Long training time
can be the result of a nonoptimum step size. Outright training

failures generally arise from two sources: network paralysis and
local minimat.

Backpropagation 57

Network Paralysis

As (he network trains, the weights can become adjusted to very
large values. This can force all or most of the neurons to operate at
large values of OUT, in a region where the derivative of the squash-
ing function is very small. Since the error sent back for training is
proportional to this derivative, the training process can come to a
virtual standstill. There is little theoretical understanding of this
problem. It is commonly avoided by reducing the step size 7, but
this extends training time. Various heuristics have been employed
to prevent paralysis, or to recover from its effects, but these can
only be described as experimental.

Local Minima

Backpropagation employs a type of gradient descent; that is, it
follows the slope of the error surface downward, constantly ad-
justing the weights toward a minimum, The error surface of a
complex network is highly convoluted, full of hills, valleys, folds,
and gullies in high-dimensional space. The network can get
trapped in 2 local minimum (a shallow valley) when there is a
much deeper minimum nearby. From the limited viewpoint of the
network, all directions are up, and it has no way to escape. Statisti-
cal training methods can help avoid this trap, but they tend to be
slow. Wasserman (1988a) has proposed a method that combines
the statistical methods of the Cauchy machine with the gradient
descent of backpropagation to produce a system that finds global
minima while retzining the higher training rate of backpropaga-
tion. This is discussed in Chapter 5.

Step Size

A careful reading of the convergence proof of Rumelhart, Hinton,
and Williams (1986) shows that infinitesimally small weight adjust-
ments are assumed. This is clearly impractical, as it implies infinite
(raining time. It is necessary to select a finite step size, and there is
very little to guide that decision other than experience. If the step

58 Neural Computing: Theory and Practice

size is too small, convergence can be very slow; if too large, paraly-
sis or continuous instability can result. Wasserman (1988b) de-
scribes an adaptive step size algorithim intended to adjust step size
automatically as the training process proceeds.

Temporal Instability

If a network is learning to recognize the alphabet, it does no good
to learn B if, in so doing, it forgets A. A process is needed for
teaching the network to learn an entire training set without dis-
rupting what it has already learned. Rumelhart’s convergence
proof accomplishes this but requires that the network be shown all
vectors in the training set before adjusting any weights. The need-
ed weight changes must be accumulated over the entire set, there-
by requiring additional storage. After a number of such training
cycles, the weights will converge to a minimal error. This method
may not be useful if the network faces a continuously changing
environment where it may never see the same input vector twice.
In this case, the training process may never converge; it may wan-
der aimlessly or oscillate wildly. In this sense backpropagation fails
to mimic biological systems. As we point out in Chapter 8, this
discrepancy (among others) led to Grossberg’s ART system.

References

Almeida, L. B, 1987. Neural computers. Proceedings of the NATO ARW on
Neural Computers, Dusseldorf. Heidelberg: Springer-Verlag.

Burr, D.). 1987. Experiments with a connectionist text reader. In Pro-
ceedings of the IEEE First International Conference on Neural Nel-
works, cds. M. Caudill and C. Butler, vol. 4, pp. 717-24. San Diego,
CA: SOS Printing.

Cottrell, G W., Munro, P, and Zipser, D. 1987. I'mage compression by
backpropagation: An example of extensional programming. 1CS
Report 8702, University of California, San Diego.

Parker, D, B. 1982, Learning logic. Invention Report $81-64, File 1, Of-
fice of 'Technology Licensing, Stanford University, Stanford, CA.
. 1987. Second order back propagation: Implementing an opti-
mal O(n) approximation to Newton's method as an artificial neu-

ral network. Manuscript submitted for publication.

Backpropagation 59

Pineda, ¥ J. 1988, Generalization of backpropagation to rc'currcm and
higher order networks. In Neural information processing sg-/stems,
ed. Dana Z. Anderson, pp. 602-11. New York: American Institute of
Physics. o

Rumelhart, D. E., Hinton, G. E., and Williams, R.J. 1986. Learning internal
representations by error propagation. In Parallel distributed process-
ing, vol. 1, pp. 318-62. Cambridge, MA: MIT Press.

Scjnowski, T.J., and Rosenberg, C. R. 1987, Parallel networks that learn to
pronounce English text. Complex Systems 1:145-68.

Stornetta, W. ., and Huberman, B. A. 1987. An improved three-layer,
backpropagation algorithm. In Proceedings of the IEEE .First Interna-
tional Conference on Neural Networks, eds. M. Caudill and C. But-
ler. San Diego, CA: SOS Printing. '

Wasserman, P. D. 1988a. Combined backpropagationfCauchy.machme.
Proceedings of the International Neural Network Society. New
York: Pergamon Press. '

_1988b. Experiments in translating Chinese characters using balck-
propagation. Proceedings of the Thirty-Third IEEE Compulter Soc:tety
International Conference. Washington, D.C.: Computer Society
Press of the IEEE. o

Werbos, P. J. 1974. Beyond regression: New tools for prediction fznd
analysis in the bebavioral sciences. Masters thesis, Harvard Univer-

sity.

4

Counterpropagation
Networks

INTRODUCTION TO COUNTERPROPAGATION
NETWORKS

'he counterpropagation network developed by Robert Hecht-
Niclsen (1987a, 1987b, 1988) goes beyond the representational
limits of single-layer networks. As compared to backpropagation,
it can reduce training time by one hundredfold. Counterpropaga-
lion is not as general as backpropagation, but it provides a solution
for those applications that cannot tolerate long training sessions.
We point out that in addition to overcoming the limitations of
other networks, counterpropagation has some interesting and use-
ful features of its own.

Counterpropagation is a combination of two well-known algo-
rithms: the self-organizing map of Kohonen (1988) and the Gross-
berg (1969, 1971, 1982) outstar (see Appendix C). Together they
possess propertics not available in either one alone.

Methods such as counterpropagation that combine network par-
adigms in building-block fashion may produce networks closer to
the brain’s architecture than any homogeneous structure. It does
indeed seem that the brain cascades various specialized modules to
produce the desired computation.

The counterpropagation network functions as a look-up table
capable of gencralization. The training process associates input
vectors with corresponding output vectors. These vectors may be

61

62 Neural Computing: Theory and Practice

binary, consisting of ones and zeros, or continuous. Once the net-
work is trained, application of an input vector produces the de-
sired output vector. The generalization capability of the network
allows it to produce a correct output even when it is given an input
vector that is partially incomplete or partially incorrect. This
makes the network useful for pattern-recognition, pattern-comple-
tion, and signal-enhancement applications.

NETWORK STRUCTURE

Figure 4-1 shows the simplified feedforward version of the coun-
terpropagation network; it illustrates the functional characteristics
of this paradigm. The full bidirectional network uses the same
principles and is discussed later in this chapter.

The neurons in layer 0 (shown as circles) serve only as fan-out
points and perform no computation. Each layer-0 neuron connects
to every neuron in layer 1 (called the Kohonen layer) through a
separate weight w,,,; these will be collectively referred to as the
weight matrix W. Similarly, each neuron in the Kohonen layer
(layer 1) connects to every neuron in the Grossberg layer (layer 2)
by a weight v,,; these comprise the weight matrix V. This looks
much like other networks we have seen in earlier chapters; howev-

vieTOrR v, KOHONEM wecvpry, OROSSBERG
LAYER o LAYER
L Myd ¢ e

SR

INIPLT
LAYLR
()

. yr: <

I HHONEN NEURONS OROSSBERG NEURONS

Figure 4-1. [lcedforward Counterpropagation Network

Counterpropagation Networks 63

o, the difference lies in the processing done by the Kohonen and
Girossherg neurons.

As in many other networks, counterpropagation functions in
two modes: the normal mode, in which it accepts an input vector
X and produces an output vector Y, and the training mode, in
which an input vector is applied and the weights are adjusted to
yleld the desired output vector.

NORMAL OPERATION
Kohonen Layer

In its simplest form, the Kohonen layer functions in a “'winner-
take-all fashion’’; that is, for a given input vector, one and only one
Kohonen neuron outputs a logical one; all others output a zero.
One can think of the Kohonen neurons as a series of light bulbs,
only one of which comes on for a given input vector.

Associated with each Kohonen neuron is a set of weights con-
necting it to each input. For example, in Figure 4-1, Kohonen
ncuron K, has weights w,,, Wy, - . . W comprising a weight
vector W,. These connect by way of the input layer to input signals
X, Xy ... 5 Xy, COMprising the input vector X. As with neurons in
most networks, the NET output of each Kohonen neuron is simply
the summation of the weighted inputs. This may be expressed as
follows:

NET,=w,; X, + Wy X+ . . . + Wy X (4-1)
where NET; is the NET output of Kohonen neuron j

NET; = Y x, wy (4-2)

or in vector notation
N=XW (4-3)

where N is the vector of Kohonen layer NET outputs.

66 Neural Computing: Theory and Practice

sional vector V is drawn on x—y coordinates, where V has x and y
components of four and three, respectively. The square root of the
sum of the squares of these components is five. Dividing each
component of V by five yields a vector V' with components 4/5
and 3/5 where V' points in the same direction as V, but is of unit
length. This may be verified by calculating the square root of the
sum of the squares of the components V’, which equals one.

Figure 4-2b shows some two-dimensional unit vectors. These
terminate 4t points on a unit circle (a circle with a radius of one),
which is the situation if there are only two inputs to the network.
With three inputs, vectors would be represented as arrows termi-
nating on the surface of a unit sphere. This idea can be extended to
networks having an arbitrary number of inputs, where each input
vector is an arrow terminating on the surface of a higher dimen-
sional-unit hypersphere (a useful abstraction even if it cannot be
visualized).

To train the Kohonen layer, an input vector is applied and its dot
product is calculated with the weight vector associated with cach
Kohonen neuron. The neuron with the highest dot product is de-
clared the “winner” and its weights are adjusted. Because the dot
product operation used to calculate the NET values is a measure of
similarity between the input and weight vectors, the training pro-
cess actually consists of selecting the Kohonen neuron whose
weight vector is most similar to the input vector, and making it still
more similar. Note again that this is unsupervised training; there is

Figure 4-2b. Two-Dimensional Unit Vectors on the Unit Circle

Counterpropagation Networks 67

no teacher, The network self-organizes so that a given Kohonen
neuron has maximum output for a given input vector. The training
cquation that follows is used:

Whew = wold R Ol(x . wold) (4—7)

where
10, = the new value of a weight connecting an input compo-
nent x to the winning neuron
10,4 = the previous value of this weight
o = 2 training rate coefficient that may vary during the train-
ing process.

lach weight associated with the winning Kohonen neuron is
¢hanged by an amount proportional to the difference between its
value and the value of the input to which it connects. The direc-
tion of the change minimizes the difference between the weight
and its input,

Figure 4-3 shows this process geometrically in two-dimensional
form. First, the vector X — W, is found by constructing a vector
from the end of W to the end of X. Next, this vector is shortened
by multiplying it by the scalar «, a number less than one, thereby
producing the change vector 6. Finally, the new weight vector W .,
is a line from the origin to the end of §. From this it may be seen
that the effect of training is to rotate the weight vector toward the
input vector without materially changing its length.

The variable o is a training-rate coefficient that usually starts out
at about 0.7 and may be gradually reduced during training. This
allows large initial steps for rapid, coarse training and smaller steps
as the final value is approached.

If only one input vector were to be associated with each Ko-
honen neuron, the Kohonen layer could be trained with a single
calculation per weight. The weights of a winning neuron would be
made equal to the components of the training vector (e =1). Usual-
ly the training set includes many input vectors that are similar and
the network should be trained to activate the same Kohonen neu-
ron for each of them. In this case, the weights of that neuron
should be the average of the input vectors that will activate it.
Setting « to a low value will reduce the effect of each training step,

68 Neural Computing: Theory and Practice

o< (X=Wap) = 5

(X = Won?

Figure 4-3. Rotating Weight Vector by Training

making the final value an average of the input vectors to which it
was trained. In this way, the weights associated with a neuron will

assume a value near the “‘center’” of the input vectors for which
that neuron is the “winner.”

Initializing the Weight Vectors

All of the network weights must be set to initial values before
(radning starts. It is common practice with neural networks to ran-
domize the weights to small numbers. For Kohonen training, tan-
domized weight vectors should be normalized. After training, the
weight vectors must end up equal to normalized input vectors.,
Therefore, prenormalization to unit vectors will start weight vec-

tors closer to their final state and thereby shorten the training
process.

Counterpropagation Networks 69

Randomizing the Kohonen layer weights can cause serious train-
ing problems, as it will uniformly distribute the weight vectors
around the hypersphere. Because the input vectors are usually not
cvenly distributed and tend to be grouped on a relatively small
portion of the hypersphere surface, most of the weight vectors
will be so far away from any input vector that they will never be
{he best match. These Kohonen neurons will always have an out-
put of zero and will be wasted. Furthermore, the remaining
weights that do become the best match may be too few in number
(o allow separation of input vector categories that are close togeth-
¢r on the surface of the hypersphere.

Suppose there are several sets of input vectors all of which are
similar, yet must be separated into different categories. The net-
work should be trained to activate a different Kohonen neuron for
cach category. If the initial density of weight vectors is too low in
the vicinity of the training vectors, it may be impossible to separate
similar categories; there may not be enough weight vectors in the
vicinity to assign one to each input vector category.

Conversely, if several input vectors are slight variations of the
same pattern and should be lumped together, they should fire a
single Kohonen neuron. If the density of weight vectors is very
high near a group of slightly different input vectors, each input
vector may activate a different Kohonen neuron. This is not cata-
strophic, as the Grossberg layer can map different Kohonen necu-
rons into the same output, but it is wasteful of Kohonen neurons.

The most desirable solution is to distribute the weight vectors
according to the density of input vectors that must be separated,
thereby placing more weight vectors in the vicinity of large-num-
ber input vectors. This is impractical to implement directly, but
several techniques approximate its effect.

One solution, called the convex combination method, sets all
the weights to the same value 1A (n), where n is the number of
inputs and hence, the number of components in each weight vec-
tor. This makes the weight vectors of unit length and all coinci-
dent. Also, each component x; of the input is given the value o x; +
(1A @] (1 -)}, where n is the number of inputs. Initially « is
given a very small value, causing all input vectors to have a length
near 1/~7/(n) and coincident with the weight vectors. As the network
trains, o is gradually increased to a limit of 1. This allows the input

70 Neural Computing: Theory and Practice

vectors to separaie and eventually assume their true values. The
weight vectors follow one or a small group of input vectors and
end the training process by producing the desired pattern of out-
puts. The convex combination method operates well but slows the
training process, as the weight vectors are adjusting to a moving
target. Another method adds noise to the input vectors. This
causes them to move randomly, eventually capturing a weight vec-
tor. This method also works, but it is even slower than convex
combination.

A third method starts with randomized weights but in the initial
stages of the training process adjusts all of the weights, not just
those associated with the winning Kohonen neuron. This moves
the weight vectors around to the region of the input vectors. As
training progresses, weight adjustments are restricted to those Ko-
honen neurons that are nearest to the winner. This radius of adjust-
ment is gradually decreased until only those weights are adjusted
that are associated with the winning Kohonen neuron.

Still another method (DeSieno 1988) gives each Kohonen neu-
ron a ‘‘conscience.’”’ If it has been winning more than its fair share
of the time (roughly 1/k, where & is the number of Kohonen neu-
rons), it temporarily raises a threshold that reduces its chances of
winning, thereby allowing the other neurons an opportunity to be
trained.

In many applications, the problem of weight distribution can
seriously affect the accuracy of the result. Unfortunately, the effec-
tiveness of the various solutions has not been fully evaluated and is
certainly problem dependent.

Interpolative Mode

Up until this point we have been discussing a training algorithm in
which only one Kohonen neuron is activated for each input vec-
tor; this is called the accretive mode. The accuracy of this method
is limited in that the output is wholly a function of a single Ko-
honen neuron.

In the interpolative mode, a group of the Kohonen neurons
having the highest outputs is allowed to present its outputs to the
Grossberg layer. The number of neurons in this grodp must be
chosen for the application, and there is no conclusive evidence

Counterpropagation Networks 71

- pegarding an optimum size. Once the group is determined, its sct

of NET outputs is treated as a vector and normalized to unit length
by dividing each NET value by the square root of the sum f)f the
squares of the NET values in the group. All neurons not in the
group have their outputs set to z€ro. '

The interpolative mode is capable of representing mo‘re complex
mappings and can produce more accurate results. Agam, no con-
¢lusive evidence is available to evaluate the interpolative versus the
aceretive modes.

Statistical Properties of the Trained Network

Kohonen training has the useful and interesting ability to extract
the statistical properties of the input data set. Kohonen (1988) has
shown that, in a fully trained network, the probability of a i
domly selected input vector (selected according to the 'probab{hty
density function of the input set) being closest to any given wt:l'gl?t
vector is 1/k, where k is the number of Kohonen neurons. Tk.ns is
the optimal distribution of weights on the hypcrsphe_re. (This ’A.S-
sumes that all of the weight vectors are in use, a situation tha}t “Tlll
he realized only if one of the methods discussed is used to distrib-
ute the weight vectors.)

TRAINING THE GROSSBERG LAYER

The Grossberg layer is relatively simple to train. An input vector is
applied, the Kohonen output(s) are established, and the Gros:sber.g
outputs are calculated as in normal operation. Next, e'ach weight is
adjusted only if it connects to Kohonen neuron. having a r‘lonzgro
output. The amount of the weight adjustment 18 proportional to
the difference between the weight and the desired output of the
Grossberg neuron to which it connects. In symbols

vt’j new = Uyj old + 16 (_yj - Urj old) kl‘ (4‘8)

where
k, = the output of Kohonen neuron i (only one Kohonen neuron

is nonzero)

72 Neural Gomputing, Theory and Practlce

Yy=component J of the vector of desired outputs

lni_tially 8 is set to approximately 0.1 and is gradually reduced agy
training progresses.

lFrom this it may be seen that the weights of the Grossberg layer
will converge to the average values of the desired outputs, whereas
th‘e weights of the Kohonen layer are trained to the avera,ge valuc:\'
of t.he inputs. Grossberg training is supervised; the algorithm has a
ges1rcd output to which it trains. The unsupervised, self-organiz-
ing operation of the Kohonen layer produces outputs at indetermi-

nate positions; these are mapped to the desired outputs by the
Grossberg layer.

THE FULL COUN TERPROPAGATION
NETWORK

Figure 4-4 shows the full counterpropagation network. In normal
operation, input vectors X and Y are applied and the trained net-
v.vork produces output vectors X’ and Y’, which are approxima-
tionsof X and Y, respectively. In this case, X and Y are assumed to

KOHONEN GROSSBERG
LAYER
%/
Xa X’
X,
')
Yy
i 7 '
Ve Y
4
Ya

Vigure 4-4. pull Counterpropagation Network

Counterpropagation Networks 73

be normalized unit vectors; hence, they will tend to produce nor-
malized vectors on the output.

During training, vectors X and Y are applied both as inputs to
the network and as desired outputs. X is used to train the X'
outputs, while Y is used to train the Y’ outputs of the Grossberg
layer. The full counterpropagation network is trained using the
same method described for the feedforward network. The Ko-
honen neurons receive inputs from both the X and Y vectors, but
these are indistinguishable from a single larger vector composed of
the X and Y vectors; thus, this arrangement does not affect the
training algorithm,

The result is an identity mapping in which the application of a
pair of input vectors produces their replicas on the output. This
does not seem very interesting until one realizes that applying only
the X vector (with the Y vector set to 0) produces both the X' and
Y’ outputs. If F is a function mapping X to Y’, then the network
approximates it. Also, if the inverse of F ¢xists, applying only the Y
vector (setting X to 0) produces X'. This unique ability to generate
a function and its inverse makes the counterpropagation network
useful in a number of applications.

Figure 4-4, unlike Hecht-Nielsen’s original configuration
(19872), does not make apparent the counterflow nature of the
network for which it is named. This form was chosen because it
also illustrates the feedforward network and facilitates the exten-
sion of concepts developed in earlier chapters.

AN APPLICATION: DATA COMPRESSION

In addition to the usual vector-mapping functions, counterpropa-
gation is useful in certain less obvious applications. One of the
more interesting examples is data compression.

A counterpropagation network can be used to compress data
prior to transmission, thereby reducing the number of bits that
must be sent. Suppose that an image is to be transmitted. It can be
divided into subimages $ as shown in Figure 4-5. Each subimage is
further divided into pixels (picture elements). Each subimage is
then a vector, the elements of which are the pixels of which the
subimage is composed. For simplicity, assume that each pixel is
either one (light) or zero (dark). If there are 7 pixels in a subimage,
then # bits will be required to transmit it. If some distortion can be

T4 Neural Computing: Theory and Practice

ST

PIXEL

ml mn

Figure 4-5. Image-Compression System

tolerated, substantially fewer bits are actually required to transmit
typical images, thereby allowing an image to be transmitted more
rapidly. This is possible because of the statistical distribution of
subimage vectors; some occur frequently, while others occur so
seldom that they can be approximated roughly. The method of
vector quantization finds these shorter bit strings that best repre-
sent the subimages.

A counterpropagation network can be used to perform vector
quantization. The set of subimage vectors is used as input to train
the Kohonen layer in the accretive mode in which only a single
neuron is allowed to be 1. The Grossberg layer weights are trained
to produce the binary code of the index of the Kohonen neuron
that is 1. For example, if Kohonen neuron 7 is 1 (and the others are
all 0), the Grossberg layer will be trained to output 00 . . . 000111
(the binary code for 7). It is this shorter bit string that is transmit-
ted.

At the receiving end, an identically trained counterpropagation
network accepts the binary code and produces the inverse func-
tion, an approximation of the original subimage.

This method has been applied both to speech and images, yield-
ing data compression ratlos of 10:1 to 100: 1. The quality has been

Counterpropagation Networks 75

icceptable, however some distortion of the data at the receiving
end is inevitable.

DISCUSSION

Robert Hecht-Nielsen, the inventor of the counterpropagation net-
work (CPN), realized its limitations: **CPN is obviously inferior to
hackpropagation for most mapping network applications. Tts ad-
vantages are that it is simple and that it forms a good statistical
model of its input vector environment’’ (1987a, p. 27).

It should be added that the counterpropagation network trains
rapidly; appropriately applied it can save large amounts of com-
puter time. It is also useful for rapid prototyping of systems, where
the greater accuracy of backpropagation makes it the method of
choice in the final version, but where a quick approximation is
Important. Also, the capability of generating a function and its
Inverse has found application in a number of systems.

References

DesSieno, D. 1988. Adding a conscience to competitive learning. Proceed-
ings of the IEEE International Conference on Neural Networks, pp.
117-24. San Diego, CA: SOS Printing.

Grossberg, S, 1969, Some networks that can learn, remember and repro-
duce any number of complicated space-time patterns. Journal of
Mathematics and Mecbanics 19:53-91.

. 1971. Embedding fields: Underlying philosophy, mathematics,
and applications of psychology, physiology, and anatomy. Journal of
Cybernetics 1:28-50.

_. 1982. Studies of mind and brain. Boston: Reidel.

Hecht-Nielsen, R. 1987a. Counterpropagation networks. In Proceedings
of the IEEE First International Conference on Neural Networks, eds.
M. Caudill and C. Butler, vol. 2, pp. 19-32. San Diego, CA: SOS
Printing.

1987b. Counterpropagation networks. Applied Optics 26(23):
1979-84.
. 1988, Applications of counterpropagation networks. Neural Net-
works 1:131-39,

Kohonen, 1. 1988, Self-organization and associative memory. 2d ed.

New York: Springer-Verlag,

5

Statistical Methods

satistical methods are useful both for training artificial neural net-
works and for producing the output from 2 previously trained
network. Statistical training methods offer important advantages
by avoiding local minima in the training process. But they create
certain problems of their own.

Using statistical methods to produce the output from a network
(hat has been previously trained is covered well by Hinton and
scjnowski (1986) and is discussed in Chapter 6; this chapter con-
centrates on network training.

TRAINING APPLICATIONS

An artificial neural network is trained by means of some process
(hat modifies its weights. If the training is successful, application
of a set of inputs to the network produces the desired set of out-
puts. There are two categories of training methods: deterministic
and statistical. A deterministic training meibod follows a step-by-
step procedure to adjust the nerwork weights based upon their
current values and the values of the inputs, actual outputs, and
desired outputs. Perceptron training is an example of the deter-
ministic approach (see Chapter 2).

Statistical training methods make pseudorandom changes in
the weight values, retaining those changes that result in improve-

T

78 Neural Computing: Theory and Practice

ments. ‘To see how this might be done, consider Figure 5-1, which
sho_ws a typical network in which neurons are conncétcd by
nghts. Here, the output of a neuron is the weighted sum of its
inputs, operated upon by some nonlinear function (see Chaptér 2
for details). The following procedure can be used to train the net-

work:

1. Apply a set of inputs and compute the resulting outputs.

2. Compare these outputs with the desired outputs and calcu-
l‘ate a measure of their difference. A commonly used method
finds the difference between the actual and desired outputs
of each element of a training pair, squares the differences
and sums all of the squares. The object of training is to mini:
mize this difference, often called the objective function.

3. Select a weight at random and adjust it by a small random
amount. If the adjustment helps (reduces the objective func-
tion), retain it; otherwise, return the weight to its previous
value.

4. Repeat steps 1 through 3 until the network is trained t(r) the
desired degree.

K
. ’ 1
~{ .
- 12
Xy ~
‘ (Ye
K
e 3 np
L |
(Weight Weight > Yp
i arroy array
K

Figure 5-1. 'Two-Layer Feedforward Network

Statistical Methods 79

This process tends to minimize the objective function but can get

tpped in a poor solution. Figure 5.2 shows how this can occur in a
system with a single weight. Assume the weight is set initially to the

vilue at point A, If the random weight steps are small, all deviations
from point A increase the objective function and will be rejected.
The superior weight setting at point B will never be found and the
system will be trapped in a “local minimum’’ instead of the “global
minimum’’ at point B. If the random weight adjustments are very
lurge, both point A and point B will be visited frequently, but so will
every other point. The weight will change so drastically that it will
never settle into the desired minimuni.

A useful strategy to avoid these problems starts with large steps
and gradually reduces the size of the average random step. This
allows the network to escape local minima, while ensuring eventu-
il network stabilization.

lLocal minimum entrapment plagues all “minimum-seeking”’
(raining algorithms. This includes perceptron and backpropaga-
(lon networks and represents a serious and widespread difficulty
(hat is often overlooked. Statistical methods can overcome this
problem; a weight adjustment strategy that causes the weights to
assume the globally optimal value of point B is possible.

As an explanatory analogy, suppose that Figure 5-2 represents 2
marble on a surface in a box. If the box is shaken violently in a
horizontal direction, the marble will move rapidly from side to

OBJECTIVE T
FUNCTION

WEIGHT

Figure 5-2. Local-Minimum Problem

80 Neural Computing: Theory and Practice

side. Never settling at one point, at any instant the marble may be
at any point on the surface with equal probability.

If the violence of the shaking is gradually reduced, a condition
will be reached in which the marble “‘sticks’” briefly at point B. At
a still lower level of shaking, the marble will stay at both points A
and B for short times. If the shaking is continually reduced, a
critical point will be reached where the shaking is just strong
enough to move the marble from point A to B, but not strong
enough to enable the marble to climb the hill from B to A. Thus,
the marble will end up in a global minimum as the shaking ampli-
tude is reduced to zero.

Artificial neural networks can be trained in essentially the same
way through random adjustments of weights. At first, large ran-
dom adjustments are made, retaining only those weight changes
that reduce the objective function. The average step size is then
gradually reduced and a global minimum will eventually be
reached.

This procedure has a strong resemblance to the annealing of
metals; hence, the term ‘‘simulated annealing’ is often used to
describe it. In a metal raised to a temperature above its melting
point, the atoms are in violent random motion. As with all physical
systems, the atoms tend toward minimum energy state (a single
crystal in this case), but at high temperatures the vigor of the
atomic motions prevents this. As the metal is gradually cooled,
lower and lower energy states are assumed until finally the lowest
of all possible states, a global minimum, is achieved. In the anneal-
ing process, the distribution of energy states is determined by the
relationship that follows:

P(eyocexp (- e/kT) (5-1)

where
P(e) = the probability that the system is in a state with energy e
k = Boltzmann’s constant
T'=temperature, degrees Kelvin

At high temperatures P(e) approaches one for all energy states.
Thus, a high energy state is almost as likely as a low energy state.
As the temperature is reduced, the probability of high energy states

D

Statistical Methods 81

fecreases as compared to the probability of low energy states. As
the temperature approaches zero, it becomes very unlikely that the
system will exist in a high energy state.

Boltzmann Training

Applying this statistical method to the training of artificial neural
networks is straightforward:

| Define a variable T that represents an artificial temperature.
Start with T at a large value.

». Apply a set of inputs to the network, and calculate the out-
puts and objective function.

4. Make a random weight change, and recalculate the network
output and the change in objective function due to the
weight change.

i. If the objective function is reduced (improved), retain the
weight change.

If the weight change results in an increase in the objective func-
tion, calculate the probability of accepting that change from the
Boltzmann distribution as follows:

Pc)y=exp (—clkT) (5-2)

where
P(c) = the probability of a change of ¢ in the objective function
& = a constant analogous to Boltzmann’s constant that must be
chosen for the problem at hand
T = the artificial temperature

Select a random number # from a uniform distribution between
sero and one. If P(c) is greater than », retain the change; otherwise,
return the weight to the previous value.

This allows the system to take an occasional step in a direction
that worsens the objective function, thereby permitting it to es-
cape a local minimum where any small step raises the objective
function.

- B2 Neural Computing: Theory and Practice

To complete the Boltzmann training strategy, repeat steps 3 and

4 over each of the weights in the network, gradually reducing the

temperature 7' until an acceptably low value for the objective fungs
tion is achieved. At this point, a different input vector is applied
and the training process is repeated. The network is trained on all
vectors in the training set, perhaps repeatedly, until the objective
function is acceptable for each.

The size of the random weight change in step 3 can be deter-
mined in many ways. For example, emulating the thermal system,

the weight change w can be selected according to the Gaussian
distribution:

P(w)=exp (- w*T?) (5-3)
where

P(w) = the probability of a weight change of size w
7'= the artificial temperature

This weight-change selection method produces a system analo-
gous to the method described by Metropolis et al. (1953).

Because the value of the weight change Aw is desired rather than
the probability of a weight change of size w, the Monte Carlo
method can be used as follows to produce the needed result:

I Find the cumulative probability function corresponding to
P(w). This is the integral of P(zw) from 0 to w. Because in this
case PQw) cannot be integrated by ordinary methods, it must
be integrated numerically and the result tabulated as Azw.
Sclecta random number from a uniform distribution over the

Interval . Use this as a value for P(w) and look up the corre-
sponding value for Aw.

|

The characieristics of the Boltzmann machine have been studied
extensively. Geman and Geman (1984) proved that the rate of tem-
periature reduction must be proportional to the reciprocal loga-
rithm of time, if convergence to a global minimum is to be
achieved. The cooling rate in this system is expressed as follows:

1) = T,/log (1 + t) (5-4)

where

...

Statlstical Methods H

7(t) = artificial temperature as a function of time
T, = initial artificial temperature
{ = artificial time

I'his discouraging result predicts very low cooling rates (anfi
long computations). This conclusion has been bor.ne out .excll)en;
mentally; Boltzmann machines often take impractical periods o

kl
time to train.

Cauchy Training

Szu and Hartley (1987) developed a method f(?r rapid t-ran.'ll;ng. of
these systems. Their method substitutes the ‘Cauchy ‘dlstrf. uu(;n
for the Boltzmann distribution when calcullatmg the step 5‘1‘26:1 s
shown in Figure 5-3, the Cauchy distribution ha's .longcrf ttm:;e
thereby increasing the probability of lzjlrgt: stcp's1zcs. In ;c ; the
Cauchy distribution has infinite (undefined) vzl-nance. By t 13 s -
ple change, the maximum temperature rcc_lucm.on ratc_e is 1:;naBe llt "
versely linear rather than inversely logarithmic, as in the '0. 2
mann training algorithm. This drastically reduces the training
time. This relationship can be expressed as follows:

T(H)=Ty/(1+1) (3-5)
The Cauchy distribution is
P(x)y=TEY[T()* + 7] (5-6)

where P(x) is the probability of a step of size x.

Cauchy distribution

&
£
.
N
T
= % 6] Boltzmann distribution

Figure 5-3. Cauchy versus Boltzmann Distributions

B Neuwral Computing: Theory and Practice

P(x) can be integrated by usual methods. Then solving for x
yields the expression

%= plT(?) tan [P(x)]} (5-7)

where

p = the learning rate coefficient
x, = the weight change

The Monte Carlo method then becomes very simple. To find x in
this case, select a random number from a uniform distribution over
the open interval (— 7/2,7/2) (necessary to bound the tangent func-
tion). Substitute this for P(x) and calculate the step size x using the
current temperature.

Artificial Specific Heat Method

Despite the improvement of the Cauchy method, training times
can still be long. A technique rooted in thermodynamics can been
used to accelerate this process. This method involves adjusting the
temperature-reduction rate according to an artificial “‘specific
heat’” calculated during the training process.

Phase changes occur during the annealing of a metal; these rep-
resent discrete energy levels. At each phase transition, there may
be a rather abrupt change in a quantity termed specific heat. Spe-
cific beat is defined as the rate of change of temperature with
energy; the changes in specific heat result from the system ‘set-
tling" into one of the local energy minima.

Artificial neural networks pass through analogous phases during
tralning, At the boundary of a phase change, the artificial specific
heat may change abruptly. This pseudospecific heat is defined as
lllu- average of the rate of change of temperature with the objective
function. As in the marble-in-a-box example, violent initial
_Ch:tngm mike the average value of the objective function virtually
!ndvps-mlvul of small changes in temperature, so the specific heat
is nearly constant. Also, at very low temperatures, the system is
frozen into 4 minimum, so again the specific heat is nearly con-
stant. Clearly, the temperature can be allowed to change rapidly in

Statdstical Methods HS

hoth of these ranges, as no improvement in the objective function
In occurring,

AL critical temperatures, a small temperature decrease causes 4
large decrcase in the average value of the objective function. Re-
(urning to the marble analogy, at the “temperature’’ where the
marble has just enough average energy to go from A to B, but not
¢nough to go from B to A, the average value of the objective func-
(ion makes an abrupt change. At these critical points, the algo-
rithm must change the temperature very slowly to ensure that the
system does not accidentally get frozen at point A, thereby becom-
ing trapped at a local minimum. The critical temperatures can be
detected as abrupt decreases in the artificial specific heat, that is,
(he average of the rate of change of temperature with the objective
[function. Once a critical temperature has been reached, tempera-
(ures close to this value must be traversed slowly to ensure conver-
gence to a global minimum. At all other temperatures, a higher rate
of temperature reduction can be safely uscd, thereby producing a
significant reduction in training time.

APPLICATIONS TO GENERAL NONLINEAR
OPTIMIZATION PROBLEMS

I'he discussion up to this point has assumed that we are adjusting
weights in a traditional artificial neural network. In fact, however,
this is a special case; these statistical techniques are far more gener-
al and are capable of solving a variety of problems in nonlinear
optimization.

A nonlinear optimization problem involves a set of indepen-
dent variables that are related to the value of an objective function
in a deterministic fashion. The goal is to find the set of values for
the independent variables that minimizes (or maximizes) the objcc-
tive function. For example, consider finding the minimum of the
function F(x)=3x*+ 5x* - 2x + 3.

Here, there is a single independent variable x that controls the
value of the objective function F(x), which is to be minimized. The
Cauchy technique previously used for training a network can be
used to select a value for x that minimizes F(x). This simple func-
tion is casily minimized using differential calculus; however, more

RO Neural Computing: Theory and Practice

complicated functions of a large number of variables can be pro-
hibitively difficult to minimize in this way.

In many practical situations, the functional relationship between
the independent variables and the objective function is unknown
and, in a practical sense, unknowable. A complex chemical process
may have no adequate mathematical model. The only measurable
quantities may be “‘yield,’ ‘‘quality,” “*cost,’ and so on, which are

some unknown function of a large number of such independent

variables as temperature, time, and raw material characteristics.
Such a problem can be solved as follows:

] 1. Observe the system and collect data to make 2 training set.
Each element of the training set consists of measurements from a
specific observation and includes values for all inputs (the input
vector) and for the outputs (the output vector).

2. Train the network over this training set. The training is ac-
complished by applying an input vector, computing the output
vector, comparing the output vector to the observed output vector,
and adjusting the weights to minimize the difference. Each input
vector is applied in turn and the network is partially trained. After
a large number of applications of the input vectors, the network
will converge to a solution that minimizes the difference between
the desired and measured system outputs.

In effect, the network constructs an internal model of an un-
known system. If the training set is large enough, the network
converges to an accurate model of the system. If the network is
presented with an input vector different from any vector applied
during training, a perfectly trained network will produce the same
output vector as the actual system would.

3. Maximize the objective function. An objective function of
the outputs must be devised to represent the degree of “‘goodness’
of the result. At this point, the inputs become the variables to the
t%'ained network. They are adjusted using the same training algo-
rithm used to set the weights in step 2; however, inputs are now
used to maximize the objective function.

In many cases, there may be constraints imposed by the prob-
lem. For example, it may not be physically possible to achieve
values of the variables outside of a specified range. These con-

Statistical Methods 87

straints (which may be complicated expressions) arc casily accom-
modated by rejecting any input variable change in step 3 that vio-
littes i constraint.

T'his generalization of the stochastic optimization technique
makes the method applicable to a wide range of optimization
problems. Other training methods can also be applied, but the
stochastic technique overcomes the difficulty of local minima so-
lutions that are inherent to backpropagation and other gradient-
descent methods. Unfortunately, the random nature of the training
process can result in long convergence times. Using pseudospeci-
fic heat methods can reduce this time considerably, but the process
remains inherently slow.

BACKPROPAGATION AND CAUCHY
TRAINING: AN OVERVIEW

Backpropagation has the advantage of a directed search; that is, the
weights are always adjusted in the direction that minimizes the
crror function. While the training time is often lengthy, it is con-
siderably faster than the random-search method of the Cauchy
machine, which finds a global minimum, but may take many incor-
rect steps and a long time in the process.

Combining the two techniques has produced encouraging re-
sults (Wasserman 1988). Making the weight adjustment equal to
the sum of that calculated by the backpropagation algorithm and
the random step required by the Cauchy algorithm produces 2
system that converges and finds the global minimum more rapidly
than a system trained by either method alone. A simple heuristic is
used to avoid network paralysis, a problem that can occur in either
hackpropagation or Cauchy training procedures.

Problems with Backpropagation

Despite the demonstrated power of backpropagation, several prob-
lems plague its application, although some of these have been
alleviated through the use of a new algorithm.

HH Neural Computing: Theory and Practice

Convergence

Rumclhart, Hinton, and Williams (1986) provide a convergence
proof cast in terms of partial differential equations—making it val-
id only if network weights are adjusted in infinitesimal steps. Be-
cause this implies infinite convergence time, it proves nothing
about training times in practical applications. In fact, there is no
proof that backpropagation will ever converge with a finite step
size. Empirical observations show that networks usually train, but
the duration of the training process is unpredictable and lengthy.

Local Minima

Backpropagation uscs gradient descent to adjust the network
weights, following the local slope of the error surface toward a
minimum. This works well with convex error surfaces, which have
a unique minimum, but it often leads to nonoptimal solutions with
the highly convoluted, nonconvex surfaces encountered in practi-
cal problems. In some cases, a local minimum is an acceptable
solution; in others, it is inadequate.

Even after the network has trained, there is no way to tell if
backpropagation has found the global minimum. If a solution is
not satisfactory, one is obliged to initialize the weights to new
random values and to retrain the network, with no guarantee that
it will train on a given trial or that a global minimum will ever be
found.

Paralysis

UInder some circumstances, a network can train itself into a state in
which weight modification comes to a virtual standstill. This “‘net-
work paralysis’™ is a serious problem; once entered, it can extend
training time by orders of magnitude.

Paralysis occurs when a large percentage of the neurons have
acquired weights so large as to produce high values for NET. This
cituses OU' to approach its limit; at these points the derivative of
the squashing function approaches zero. As we have seen, the
bhackpropagation algorithm calculates the magnitude of the weight
change using this derivative as a factor in the expression. For af-
fected neurons, the near-zero derivative causes the weight change

Statistical Methods HY

1o approach zero; if the condition is widespread throughout the
network, training can slow to a near halt.

There is no theory that predicts whether or not a network will
hecome paralyzed during training,. Experimentally, small step sizes
have been found to produce paralysis less often, but a step that is
small for one problem may be excessive for another. The cost of
paralysis can be high. Simulations can consume many hours of
computer time, only to end in a paralytic training failure.

Problems with the Cauchy Training Algorithm

Despite the improvement in training rate provided by the Cauchy
machine as compared to the Boltzmann machine, convergence
times can still be 100 times those of the backpropagation algo-
rithm. Also, network paralysis is particularly severe using the
Cauchy training algorithm, especially in a network with nonlinear-
ity, such as the logistic function. The infinite variance of the
Cauchy distribution allows weight changes of unlimited magni-
tude. Furthermore, large weight changes will sometimes be ac-
cepted even though they are disadvantageous, often resulting in
severe saturation of neurons in the network, with the resulting risk
of paralysis.

Combined Backpropagation/Cauchy Training

Weight adjustments in the combined backpropagation/Cauchy al-
gorithm consist of two components: (1) a directed component,
calculated using the backpropagation algorithm; and (2) a random
component, determined by the Cauchy distribution.

These components are calculated for each weight and their sum
is the amount by which the weight is changed. As in the Cauchy
algorithm, the objective function is calculated after a weight
change. If there is an improvement, the change is retained; other-
wise, it is retained with a probability determined by the Boltzmann
distribution.

The weight adjustment is calculated using the equations for the
two algorithms presented previously:

920 Neural Computing: Theory and Practice

u’nm‘k{” + l) “Jnm,k(”} + Tf [aAiUf)ru.k(n) it (I . "Y_) 5u.k ()l ['I‘m ,'] + (l . "?) "rl

where 7 is a coefficient controlling the relative magnitudes of the
Cauchy and backpropagation components of the weight step. If g
is set to zero, the system becomes a pure Cauchy machine; if 5 is set
to one, it becomes a backpropagation machine.

Changing only one weight between calculations of the objective
function is computationally inefficient; it has been found that
changing all of the weights of a layer is a better compromise
although some problems may require another strategy. ’

Overcoming Network Paralysis with
Combined-Method Training

As with the pure Cauchy machine, if a weight change worsens the
objective function, the Boltzmann distribution is used to decide if
the new weight value should be retained, or the previous value
restored. Thus, there is a finite probability that a disastrous set of
weight changes may be retained. Since the Cauchy distribution has
infinite variance (the range of the tangent function spans — o to
+ o0 over the specified domain), it is quite capable of producing
tremendous weight changes, often leading to network paralysis.

The obvious solution of limiting the range of the weight steps
creates questions about the mathematical soundness of the result-
ing algorithm. Szu and Hartley (1987) have proven that the system
converges to 2 global minimum at an excellent rate if the algorithm
is left intact; no such proof exists if the step size is artificially
limited. In fact, experiments have shown cases in which large
weights are required to implement a function, as when two large
weights must be subtracted to produce a small difference.

Another solution randomizes the weights of necurons that are
found to be in saturation. This is disadvantageous in that it can
badly disrupt the training process, sometimes prolonging it indefi-
nitely.

A method has been found to solve the paralysis problem while
leaving previous training nearly intact. Here, saturated neurons are
detected by inspecting their QUT signals. If the magnitude of QUT
is approaching the limiting value, either positive or negative, all of
the weights feeding that neuron are operated upon by a squashing

Statistical Methods 01

function, much like that used o produce the OUT signal of the
neuron, except that the range of the function is set to (+5,—5), or
vome other suitable value. The modified weight values are then

W= — 5+ 101"[1 + eXp (_ wmnl's)]

I'his function severely reduces the magnitude of excessively
large weights; small weights are much less affected. Furthermore,
it maintains symmetry, thereby preserving small differences be-
(ween large weights. It has been shown experimentally that the
function pulls neurons out of saturation, without excessive dis-
(urbance of the existing network training. There has been no ma-
jor effort made to optimize this function; other values of the con-
stants may prove superior.

lixperimental Results

The new backpropagation/Cauchy algorithm has been used to
train several large networks. For example, the handwritten Chi-
nese character recognition system, reported in Wasserman (1988),
was successfully trained using this method. Still, training times can
be long (an average of 36 hours of computer time was required for
this training task).

In another experiment, this network was trained on the exclu-
sive-or problem to produce a training test that could be compared
(o the work of others. An average of 76 presentations of the train-
ing set was required for the network to converge. This may be
compared to the average of 245 presentations reported by Ru-
melhart, Hinton, and Williams (1986) using backpropagation, and
the 4,986 iterations reported by Parker (1987) with second-order
backpropagation, both solving the exclusive-or problem.

No training session resulted in 2 local minimum, such as Ru-
melhart found in his work on this problem. Furthermore, the 160
training sessions disclosed no unexpected pathologies; the net-
work always trained correctly.

Experiments with the Cauchy machine alone produced much
longer training times. For example, at p = .002 an average of 2,284
presentations of the training set were required to train the net-
work.

92 Neural Computing: Theory and Practice
Discussion

The combined backpropagation/Cauchy network trains signifi-
cantly faster than either algorithm alone, and is relatively iilscmi-
tive to the values of the coefficients. Convergence to a global mi1:1i-
mum 15 guaranteed by the Cauchy algorithm; hundreds of trainin
experiments have produced no case in which the network becam§
trapped in a local minimum. Network paralysis has been solved b
the use of a selective weight-compression algorithm that has pro}i
fluced 'convergence in all tests to date, without materially increas-
ing training time.

Despite these encouraging results, the method is not fully evalu-
ated, especially on large problems. Much more work will be re
quired to determine its advantages and disadvantages. -

References

(Jema.n, S., and Geman, D. 1984. Stochastic relaxation, Gibbs distribu-

tions and Baysian restoration of images. IEEE Transactions on Pat-
. tern Analysis and Machine Intelligence 6:721-41.

Hinton, G.E., and Sejnowski, T. J. 1986. Learning and relearning in Boltz-
mann machines. In Parallel distributed processing, vol.1, pp. 282-
317. Cambridge, MA: MIT Press. } o

Metrptipolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
leller, E. 1953. Equations of state calculations by f,ast COI';lpl.ltiII., ma-
chines. Journal of Chemistry and Physics 21:1087-91. ’

Parker, D. B. 1987. Optimal algorithms for adaptive networks: Second
order backpropagation, second order direct propagation and second
order Hebbian learning. In Proceedings of the IEEE F;‘rsr Interna-
tional Conference on Neural Networks, eds. M. Caudill and C. But-
ler, vol. 2, pp. 593-600. San Diego, CA: SOS Printing. .

Rumeclhart, D, E., Hinton, G. E., and Williams, R.]. 19806. Learning inter-
nal representations by error propagation. In Parallel distributed pro-

S :'Ic;s.s'fug, vol.1, pp. 318-62. Cambridge, MA: MIT Press.

Szu, 1 artle i

! ué;(l;:l,,::l.;::, l_;c_)ng 1987, Fast simulated annealing. Physics Letters

Wasserman, P D, 1988, Combined backpropagation/Cauchy machine
Neural Networks: Abstracts of the First INNS Meeting, Boston 1988-
vol. 1, p. 556. Elmstord, NY: Pergamon Press. , ,

6

Hopfield Nets

The networks presented in previous chapters are nonrecurrent;
that is, there is no feedback from the outputs of the networks to
their inputs. The lack of feedback ensures that the networks are
unconditionally stable. They cannot enter 4 mode in which the
output wanders interminably from state to state, never producing a
usable output. This highly desirable characteristic comes with a
price; nonrecurrent networks have a repertoire of behavior that is
limited compared to their recurrent kin.

Because recurrent networks have feedback paths from their out-
puts back to their inputs, the response of such networks is dynam-
ic; that is, after applying a new input, the output is calculated and
fed back to modify the input. The output is then recalculated, and
the process is repeated again and again. For a stable network, suc-
cessive iterations produce smaller and smaller output changes until
eventually the outputs become constant. For many networks, the
process never ends, and such networks are said to be unstable.
Unstable networks have interesting properties and have been stud-
ied as examples of chaotic systems. The large subject of chaos is
outside of the scope of this volume, however. Instead, we concen-
trate on stable networks, that is, those that eventually produce 2
constant output.

Stability problems stymied early researchers. No one was able to
predict which networks would be stable and which would change
continuously. Furthermore, the problem appeared so difficult that

93

94 Neural Computing: Theory and Practice

many rescarchers were pessimistic about finding a solution. Fortu-
nately, a powerful network theorem that defines a subset of the
recurrent networks whose outputs eventually reach a stable state
has been devised (Cohen and Grossberg 1983). This brilliant ac-
complishment opened the door to further research, and today
many scientists are exploring the complicated behavior and capa-
bilities of these systems.

John Hopfield has made important contributions to both the
theory and application of recurrent systems. As a result, some
configurations have become known as Hopfield nets. A review of
the literature shows that many others have conducted research on
these and similar devices; for example, Grossberg (1987) has stud-
ied the general properties of networks similar to many of those
presented here. The works cited at the end of this chapter are not
intended to constitute an exhaustive list of titles on the subject of
recurrent systems; rather they are accessible writings that can serve
to explain, amplify, and extend the contents of this volume.

RECURRENT NETWORK CONFIGURATIONS

Figure 6-1 shows a recurrent network consisting of two layers. The
format is somewhat different from that found in the work of Hop-
field and others, however, it is functionally equivalent and ties in
well with the networks presented in earlier chapters, Layer 0, as in
previous illustrations, serves no computational function; it simply
distributes the network outputs back to the inputs. Each layer 1
neuron computes the weighted sum of its inputs, producing a NET
signal that is then operated on by the nonlinear function F to yield
the OUT signal. These operations are similar to the neurons of
other networks (see Chapter 2).

Binary Systems

In Hopfield’s carly work (1982), the function F was a simple
threshold. The output of such a neuron is one if the weighted sum
of the outputs of the other neurons is greater than a threshold 7
otherwise it is 0. It is calculated as follows:

Hopfleld Nets DL]

OuUT:

OuTe

OUTn

LAYER 1

LAYER D

dotted lines indicate weights of zero

Figure 6-1. Single-Layer Recurrent Network

NET, = Yw,0UT, +IN, (6-1)

i*j

OUT, = 1 if NET,>T;
OUT,;=0if NET,<7,
OUT, unchanged if NET, =T,

The state of a nefwork is simply the set of t_h? current \‘falues of
the OUT signals from all neurons. In the olrlgmal Hopfielq netj
work, the state of each neuron changed at dlSCI‘.CtC random times;
in later work, the neuron states could change smlu]taneouslg_z. Be-
cause the output of a binary neuron can be only one or zero (mteri;
mediate levels are not allowed), the current statc of the networT
forms a binary number, each bit of which represents the OU

i g curon. '
Sig’? 11122\!2?1{’5 operation is casily visualized geometrically. Flg-
ure 6-2a shows the case for two neurons in the output layer in
which each of the four system states (00, 01, 10, 1 1) labels a vertex

96 Neural Computing: Theory and Practice

01 11

4] 10

Figure 6-2a. Two Neurons Produce Four System States

of a square. Figure 6-2b shows a three-neuron system represented
by a cube (in three-dimensional space) having eight vertexes, each
labeled with a three-bit binary number. In general, a system \;rith n
neurons has 2# distinct states and is associated with an #-dimen-
sional hypercube.

When a new input vector is applied, the network moves from
vertex to vertex until it stabilizes. The stable vertex is determined
by the network weights, the current inputs, and the threshold
value. If the input vector is partially incorrect or incomplete, the
network stabilizes to the vertex closest to the one desired. ’

116

001

000

Figure 6-2b. Three Neurons Produce Eight System States

Hopfleld Nets 97

Stability

As with other networks, the weights between layers in this net-
work may be considered to form a matrix W. Cohen and Gross-
herg (1983) have shown that recurrent networks are stable if the
matrix is symmetrical with zeros on its main diagonal; that is, if
w, = w, for i not equal to j, and w; = 0 for all £.

The stability of such a network may be proven through an ele-
gant mathematical technique. Suppose a function can be found
that always decreases each time the network changes state. Eventu-
ally this function must reach a minimum and stop, thereby en-
suring that the network is stable. The function that follows is
called a Liapunov function and works in just such a manner on the
recurrent networks presented above:

E=(- 1233w, OUT, OUT, - 31, OUT, S7,0UT, (6-2)
LI J i
where
E = an artificial network energy
w,; = weight from the output of neuron i to the input of neu-
ron f
OUT, = output of neuron j
I;= external input to neuron J
T, = threshold of neuron j

The change in energy E, due to a change in the state of neuron 7,
is
SE= — {E(w,,. OUT,)+ ;- Tj] 5§ OUT,

It
- — [NET, - T}| 6 OUT, (6-3)

where § OUT; is the change in the output of neuron j

Suppose that the NET value of neuron j is greater than the
threshold. This will cause the term in brackets to be positive and,
from Equation 6-1, the output of neuron j must change in the
positive direction (or remain constant). This means that 8 OUT, can
be only positive or zero, and § E must be negative; hence, the
network energy must either decrease or stdy constant.

Next, assume that NET is less than the threshold. Then & OUT,

98 Neureal Computing: Theory and Practice

can be only negative or zero; hence, again the energy must de-
crease or stay constant.

Finally, if NET equals the threshold, 6, is zero and the ener
remains unchanged. *

This shows that any change in the state of a neuron will either
reduce the energy or maintain its current value. Because the ener-
gy s.h(.)ws this continuous downward trend, eventually it must find
a m\mrmum and stop. By definition, such a network is stable.

The network symmetry criterion is sufficient, but not necessar
t‘o define a stable system. There are many stable systems (e aslfi
feedforward networks!) that do not satisfy it. Also, exampl-egsl,can
be sﬁown in which minute deviations from symmetry can produce
continuous oscillations; however, approximate symmetry is usual-
ly adequate to produce stable systems.

Associative Memory

I-.Iuman memory operates in an associative manner; that is, a por-
tion of a recollection can produce a larger related mem(;ry For
example, hearing only a few bars of music may recall a comblete
sensory experience, including scenes, sounds, and odors. By con-
trast, ordinary computer memory is location addressable; an ad-
dress is applied and the data occupying that address is retu;ned

A recurrent network forms an associative memory. Like hurr;all
%Tlemory, a portion of the desired data is supplied and the full data

mcmory” is returned. To make an associative memory using a
rf:‘cu'rrcnt network, the weights must be selected to produce energy
minima at the desired vertexes of the unit hypercube.

Hopfield (1984) has developed an associative memory in which
Fhe outputs are continuous, ranging from + 1 to - 1, correspond-
ing to the binary values 0 and 1, respectively. The ;llelllOI:iCS are

enched as binary vectors and stored in the weights according to
the formula that follows:

w,j = E (OU.[(LQ’ OU'T],d) (6-4)

d=1wm

where

m = the number of desired memories (output vectors)

Hopficld Nets 99

d = the number of a desired memory (output vector)
OUT, ;= the ith component of the desired output vector

This expression may be clarified by noting that the weight array
W can be found by calculating the outer product of each desired
vector with itself (if the desired vector has » components, this
operation forms an #-by-# matrix) and summing all of the matrixes
thus formed. This may be expressed symbolically as follows:

W= D/D, (6-5)

where D, is the ith desired row vector.

Once the weights are determined, the nerwork may be used to
produce the desired output vector, even given an input vector that
may be partially incorrect of incomplete. To do so, the outputs of
the network are first forced to the values of this input vector. Next,
the input vector is removed and the network is allowed to “‘relax”
toward the closest deep minimum. Note that the network follows
the local slope of the energy function, and it may become trapped
in a local minimum and not find the best solution in a global sense.

Continuous Systems

Hopfield (1984) shows other cases in which the activation func-
tion F is continuous, thereby more accurately simulating the bio-
logical neuron. A common choice is the S-shaped sigmoid or logis-
tic function

Fo) = 1/(1 + ™) (6-6)

where \ is 2 coefficient that determines the steepness of the sig-
moidal function. If \ is large, F approaches the threshold function
previously described; smaller values for A produce a more gentle
slope.

Like the binary system, stability is ensured if the weights are
symmetrical; that is, w,; =, and w,, =0 for all #. An energy func-
tion that proves such networks stable has been devised, but it is not
treated here due to its conceptual similarity to the discrete casc.

100 Neural Computing: Theory and Practice

Interested readers should consult Cohen and Grossberg (1983) for
a more complete treatment of this important topic.

If the value of N is large, continuous systems perform much like
discrete binary systems, ultimately stabilizing with all outputs near
zero or one, a vertex of the unit hypercube. As X is reduced, stable
points move away from the vertexes, disappearing onc by one as A
approaches zero. Figure 6-3 shows an energy contour map for a
continuous system consisting of two neurons.

Hopfield Nets and the Boltzmann Machine

Hopfield nets suffer from a tendency to stabilize to a local rather
than a global minimum of the energy function. This problem is
largely solved by a class of nctworks known as Boltzmann ma-
chines, in which the neurons change state in a statistical rather
than a deterministic fashion. There is a close analogy between
these methods and the way in which a metal is annealed; hence,
the methods are often called simulated annealing.

e e e T T T e
== T ET 3 T T T3>

RS ST
* ..

. Gy By b
I e e e a a a

Figure 6-3. Energy Contour Map

Hopfield Nets 101

Thermodynamic Systems

A metal is annealed by heating it to a temperature above its melting
point, and then letting it cool gradually. At high temperatures, the
atoms possess high energies and move about freely, randomly as-
suming every possible configuration. As temperature is gradually
reduced, the atomic energies decrease and the system as a whole
tends to settle into a minimum-energy configuration. Finally, when
the cooling is complete, a state is reached where the system energy
is at a global minimum.

At a given temperature, the probability distribution of system
energies is determined by the Boltzmann probability factor

exp (- E/RT)

where
E =system cnergy
k = Boltzmann’s constant
T = temperature

From this it may be seen thar there is a finite probability of the
system’s possessing high energy even at low temperatures. Like-
wise, there is a small but calculable probability that a kettle of
water on a fire will freeze before it boils.

The statistical distribution of energies allows the system to ¢s-
cape a local energy minimum. At the same time, the probability of
high system energy decreases rapidly as temperature drops; hence,
there is a strong bias toward low energy states at low temperatures.

Statistical Hopfield Networks

If the state-change rules for the binary Hopfield net are determined
statistically rather than deterministically as in Equation 6-1, a sim-
ulated-annealing system results, To accomplish this, the probabili-
ty of a weight change is determined by the amount by which the
NET output of a neuron exceeds its threshold. In symbols, let

E,=NET, -0,

102 Neural Computing: Theory and Practice

where
NET, = the NET output of neuron &
6, = the threshold of neuron &

and

Pe=1U[1+ exp (-6 EJ/T)
(note the Boltzmann probability function in the denominator)

where T is artificial temperature.

In operation, the artificial temperature T is set to a high value,
neurons are clamped to an initial state determined by an input
vector, and the network is allowed to seck an energy minimum
according to the procedure that follows:

1. For each neuron, set the state to one, with a probability equal
to p,; otherwise, set its state to zero.

2. Gradually reduce the artificial temperature and repeat step 1
until equilibrium is reached.

Generalized Networks

The Boltzmann-machine technique can be extended to networks
of virtually any configuration, although stability cannot be guaran-
teed. To do 50, simply select one set of neurons to serve as inputs
and another set to serve as outputs. Clamp the input set to the
values of the input vector and allow the network to relax accord-
ing to steps 1 and 2 above.

A training procedure for such a network has been described by
Hinton and Sejnowski (1986), consisting of the steps that follow:

1. Calculate clamped probabilities.

a. Clamp input and output neurons to the training vector
values.

b. Allow the network to find equilibrium.

¢. Record the output values for all units.

d. Repeat steps a through c¢ for all training vectors.

e. Calculate P, or the probability over all training vectors
that unit ¢ and unit f are both one.

Hopficld Nets 103

2. Calculate unclamped probabilities.
4. Starting from a random state, allow the network to “‘free
run’’ with no inputs or outputs clamped.
b. Repeat step 2a a large number of times, recording values
of all neurons.
c. Calculate P—;, or the probability that units i and j are both
one.
3. Adjust network weights as follows:

dw =[P ;- Pyl

where
b1, = the change in weight w
n = the learning rate coefficient

APPLICATIONS
Analog-to-Digital Converter

In recent works (Hopfield and Tank 1985; Tank and Hopfield
1986), an electrical circuit has been presented that uses a recu}'rent
network to produce a four-bit analog-to-digital converter. F}gure
6-4 shows a block diagram of the circuit, with amplifiers serving as
artificial neurons. Resistors, representing weights, connect each
neuron’s output to the inputs of all others. To satisfy the stapility
constraint, N0 resistor cONNeCts a neuron’s output to its own input
and the weights are symmetrical; that is, a resistor from the output
of neuron i to the input of neuron j has the same value as the
resistor from the output of neuron j to the input of neuron .

Note that the amplifiers have both normal and inverting outputs.
This takes into account the case in which a weight must be nega-
tive, while permitting the use of ordinary positive-valued resistors
for all weights. All possible resistors are shown in Figurc 6-4;, how-
ever, in no case is it necessary to connect both the normal and
inverted outputs of a neuron to another neuron’s input. .

In a realistic circuit, each amplifier will have a finite input resis-
tance and input capacitance that must be included to charz.lcterize
the dynamic responsc. Network stability does not require that
these elements be the same for all amplifiers, nor need they be

104 Neural Computing: Theory and Practice

=

Figure 6-4. Four-Bit Analog-to-Digital Converter Using Hopficld Net

symmetrical. Because these elements affect only the time required
to reach a solution and not the solution itself, they have been
omitted to simplify the analysis.

The application assumes that a threshold function is used (the
limit of the sigmoid function as X approaches o). Furthermore, all
of the outputs are changed at the beginning of discrete time inter-
vals called epochs. At the start of each epoch, the summation of
the inputs to each neuron is examined. If it is greater than the
threshold, the output becomes one; if it is less than the threshold,
it becomes zero. Neuron outputs remain unchanged during an ep-
och.

The object is to select the resistors (weights) so that a continu-
ously increasing voltage X applied to the single-input terminal
produces a set of four outputs representing a binary number, the
value of which is an approximation to the input voltage (sce Figure
6-5). Tirst, the energy function is defined as follows:

= - 12X~ ¥ 2 OUT) + 3,2¥ NOUT{1-OUT)] (6-7)
!)

4

where X is the input voltage.

Hopfleld Nets 108

When F is minimized, the desired outputs have been reached,
The first expression in brackets is minimized when the binary
number formed by the outputs is as close as possible (in the least-
squares sense) to the analog value of the input X. The second
hracketed expression goes to 0 when all of the outputs are either 1
or 0, thereby imposing the constraint that the outputs have only
hinary values.

If Equation 6-7 is rearranged and compared with Equation 6-2,
the resulting expression for the weights is

W= — PALRE

=2 (6-8)

where
w,, = conductance (the reciprocal of resistance) from the output

QuT,0UT, OUT, DUT,

1 1 1 1 S
1 1 1 0
1 1 0 1 —
1 1 0 0 o=
1 01 1 —
T 1 0 1 O =
BINARY 1 0 0 1 —_
OUTPUT L 0 9 0 o
c 1 1 1 ==
o0 1 t 0 i
o 1 0 1 —_
0o 1 0 0 =
o 0 1 1 ==
0 0 1 0 —
0o o 0 1 —
o 0 0 0

0123456789101118131415

INPUT ¢VOLTS)
- —>

Figure 6-5. Four-Bit Analog-to-Digital Converter Ideal Input-Out-
put Relationship

106 Neural Computing: Theory and Practice

of neuron 7 to the input of neuron f (this must also equal the
conductance from the output of neuron j to the input of
neuron 7)

v, = conductance from the input X to the input of neuron 7.

To produce a circuit with practical values of resistance and power
dissipation, all weights must be scaled by a multiplicative constant.

The idealized input—output relationship of Figure 6-5 will be
realized only if the inputs are set to zero prior to performing a
conversion. If this is not done, the network may become trapped

in a local minimum of the energy function and produce incorrect
outputs.

The Traveling Salesman Problem

The “‘traveling salesman problem,” or TSP, is an optimization task
that arises in many practical situations. [t may be stated as follows;
given a group of cities to be visited and the distance between each
city, find the shortest tour that visits each city only once and
returns to the starting point. The problem has been proven to be
one of a large set of problems termed “NP complete’” (nondeter-
ministic polynomial} (Garey and Johnson 1979). NP complete
problems have no known method of solution better than trying all
the possibilities, nor, according to most mathematicians, is any
superior method likely to be found. Because such an exhaustive
scarch is generally impractical for more than a few cities, heuristic
methods have been applied to find solutions that are acceptable, if
not optimal.

The solution using recurrent networks described by Hopfield
and Tank (1985) is typical in that regard; the results are not guaran-
teed to be optimal. Still, an answer is reached so rapidly that the
wehnigue may prove useful in certain cases.

Suppose that the cities to be visited are lettered A, B, C, and D,
and that the distance between the pairs is ., d,., and so on.

The solution is an ordered set of # cities. The problem is then to
map this onto the computational network, using neurons in the
high-gain mode (A approaching o). Each city is represented as a
row of n ncurons. One and only one such neuron in a row may be

Hopfleld Nets 107

set 1o one (all others must be set to-zero). This neuron sct to one
indicates the order in which a specific city is visited during the
tour. Figure 6-6 shows such a result, where city C is visited first,
city A is visited second, city D is visited third, and city B is visited
fourth. This requires #? neurons, a number that grows rapidly with
the number of cities. The length of such a tour would be &, + d,, +
., +d,. Because each city is visited only once, and only one city
is visited at a time, there is only a single 1 in each row and column.
For an n-city problem there are n!/(2n) distinct tours. If n= 60,
there are 69.34155 x 1078 possible tours. Considering that there are
only 10" stars in the Milky Way galaxy, it becomes clear why
calculating all possibilities for a 1,000-city tour would take geolog-
ical time on the world’s fastest computer.

Let us demonstrate how to set up a network to solve such an NP-
cumplete problem. Each neuron is identified by double subscripts,
indicating the city and the order in which it is visited. For exam-
ple, OUT,, indicates that city x was the jth city in the tour.

The energy function must satisfy two requirements: first, it must
be low for only those solutions that produce a single 1 in each
column and row. Second, it must favor solutions having short
paths. .

The first requirement is satisfied by the three-summation energy
function that follows:

E=A/233% OUT,; OUTy,

X i j#i

+B2Y Y D OUT,, OUTy,

I X Y+X

+ Clz[(EZOLITX,> 5 n} (6-9)

X i

where A, B, and C are constants, The resulting set of rules is as
follows:

1. The first triple summation is zero if, and only if, each row
(city) contains no more than a single L.

2. The second triple summation is zero if, and only if, each
column (tour position) contains no more than a single 1.

108 Neural Computing: Theory and Practice

ORDER
VISITED

citzvp 1 2 3 4

' Dj{o 0 1 0

Figure 6-6. ‘Traveling Salesman Tour

3. The third summati i i
ion is zero if, and only if, th
»n 1s in the matrix. , Fil ey

Th i i
s e second requirement—favoring short tours—is satisfied by
ing a term to the energy function as follows:

E=12D%, > Ydyy OUT(OUT,,,, + OUTy,_,) (6-10)

X ¥Y=X i

N is te

Suc]);e tlllat this term represents the length of any valid tour. The

OUscnpts are defined modulo n for convenience; that is
T,.;= OUT,, where D is a constant. , ,

With §ufficiently large values for A, B, and C, the low-ener
states will represent valid tours, while a large value for D € -
that a short tour will be found. o

Next, the weights must be found. This involves relating the

terms in the energy function to
) those of the gene ;
Equation 6-2). The result is as follows: getierl. Touhd, (pee

wx'. = — A —0;
" 8,{1-6,) (prevents more than a single 1 within a

row)
-Bo (1-6,) (prevents more than a single 1 in a col-
‘ umii)
=G (global inhibition)
-Dd,(8,,. +06;,_,) (distance tertn)

where 6,= 1 if { = f and otherwise is 0.

Hopficld Nets s

In addition, cach neuron has « bias weight connected o+ 1
with a value of Cn. '

Hopficld and Tank (1983) report 4n experiment in which the
'SP was solved for 10 cities. In this case, they chose the excitation
function

OUT = 1/2[1 + tanh (NET/24,))

As 2 result, 16 out of 20 trials converged to valid tours, and about
50% of the solutions were onc of the shortest tours as found by
exhaustive scarch. This result is more impressive if one realizes
that there are 181,440 possible valid tours.

It has been reported that the convergence of Hopfield’s solution
to the traveling salesman problem is highly dependent upon the
coefficients, and that there is no systematic way to determine their
values (Van den Bout and Miller 1988). These authors proposc
another energy function, with only one coefficient the value of
which is easily found. In addition, they present a nEw convergence
algorithm. It may be expected that new and better methods will
continue t be developed, as a fully satisfactory solution would
have many important applications.

DISCUSSION
Local Minima

Starting from suitable initial conditions, the analog-to-digital con-
verter network finds a single optimal solution. This is due to the
simple nature of the energy surface for this problem. In the TSP,
the energy surface is highly convoluted—full of dips, valleys, and
local minima—and there is no guarantee that a global optimal solu-
tion will be found, or even that the solution will be valid. This
raises serious questions about the reliability of the network and
the credibility of its solutions. The limitations of the network are
mitigated by the fact that finding global minima for NP-complete
problems is an intractable problem that has not been solved in 2
reasonable amount of time in any other ways; methods that are
much slower and inherently serial produce results that are no bet-

LET.

110 Neural Computing: Theory and Practice
Speed

The rapid computational capability of the network is 2 major ad-
vantage. This arises from the highly parallel nature of the conver-
gence process. If implemented in analog electronics form, solu-
tions seldom take more than a few network time constants.
Furthermore, the convergence time changes little with the size of
the problem. Contrast this with the more than exponential in-
crease in processing time with conventional approaches. Single-
processor simulations cannot take advantage of this inherently par-
allel architecture, but modern multiprocessor systems, such as the
Connection Machine (with 65,536 processors!), hold great prom-
ise in solving previously intractable problems.

Energy Function

It is not a trivial matter to find the function that maps a problem
onto the general network-energy function. Existing solutions have
been achieved through ingenuity and mathematical expertise, tal-
ents that are always in short supply. For certain problems, methods
exist to determine the network weights in a systematic fashion;
these techniques are studied in Chapter 7.

Network Capacity

The maximum number of memories that may be stored in a2 Hop-
field network is a current research topic. Because a network of N
binary neurons can have as many as 2/V states, researchers were
surprised to find that the maximum memory storage capacity was
much less than this.

If too many memories are stored, the network will not stabilize
on some of them. Furthermore, it can remember things it has not
been taught; that is, it can stabilize to a solution that is not among
the desired vectors. These characteristics perplexed early research-
ers, who had no mathematical way to determine how many memo-
ries could be stored without encountering the problems.

Recent research has cast much Iight on this matter. For example,

Hoplield Nets 111

it had been conjectured that the maximum number of memories K
that can be stored in a network of N ncurons and recalled without
error is less than ¢N?, where ¢ is a positive constant greater than
one. While this limit is approached in some cases, in general it
proved to be excessively optimistic; Hopfield (1982) showed tf,x-
perimentally that the general capacity limit was actually more like
(. 15N. Abu-Mostafa and St. Jacques (1985) have shown that the
number of such states cannot exceed N, a result that is compatible
with observations of actual systems and is as good an estimate as is
available today.

CONCLUSION

Recurrent networks are fertile subjects for continued research.
Their dynamic behavior creates new and interesting possibilities
and certain unique problems. As we point out in Chapter 9, the
power and problems translate into the optical domain, xjvhere they
create fascinating image-recognition capability in addition to per-
plexing limitations.

References

Abu-Mostafa, Y. §., and St. Jacques, J. 1985. Information capacity of the
Hopfield model. IEEE Transactions on Information Theory 31(4):
461-64. N

Cohen, M. A, and Grossberg, S. G. 1983. Absolute stability of global
pattern formation and parallel memory storage by competitive neurjal
networks, IEEE Transactions on Systems, Man dand Cybernetics
13:815-26. ' B

Garey, M. R., and Johnson, D. 8. 1979. Computers and intractability.
New York: W. H. Freeman.

Grossberg, S. 1987. The adaptive brain, vols. 1 and 2. Amsterdam:
North-Holland. o

Hinton, G. E., and Sejnowski, T. J. 1986. Learning and relearning in Boltz-
mann machines. In Parallel distributed processing, vol. 1, pp. 282-
317. Cambridge, MA: MIT Press. .

Hopfield, J. J. 1982. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Acad-
emy of Science 79:2554-58.

112 Neural Computing: Theory and Practice

— 1984. Ncl?l‘()llh‘ with graded response have collective computa-
tl()ll:lll properties like those of two-state nceurons. Proceedings of the
National Academy of Science 81:3088-92.)

Hopﬁel(.i, l j.,. and Tank, D. W. 1985. Neural computation of decisions in
optimization problems. Biological Cybernetics 52:141-52

1986. Computing with necural circui .

rcuits: A model. Scienc
i3 Science

Tank, D. W and Hopfield, J. J. 1986. Simple “‘neural” optimization net-
works: An A/D converter, signal decision circuit, and a linear pro-
gramming circuit. [EEE Transactions on Circuits and §

g s ST i
33(5):533-41. ptems A3

Van Lflcn B_out, D. E., and Miller, T. K. 1988. A traveling salesman objective

unction that works. Proceedings of the [EEE International Confer-

ence on Neural Networks, vol. 2, pp. 299-304. § ; .
o R 3 = . D el
Printing B an Dicgo, CA: $O8

Bidirectional
Associative
Memories

{luman memory is often associative; onc thing reminds us of an-
other, and that, of still another. If we allow our thoughts to wan-
der, they move from topic to topic based on a chain of mental
associations. Alternatively, we can use this associative ability to
recover a lost memory. If we have forgotten where we left our
plasses, we attempt to remember where we last saw them, who we
were speaking to, and what we were doing. We thereby establish
one end of an associative link and allow our mind to connect it to
the desired memory.

The associative memories discussed in Chapter 6 are, strictly
speaking, autoassociative; that is, a memory can be completed or
corrected, but cannot be associated with a different memory. This
is o result of their single-layer structure, which requires the output
vector to appear on the same neurons on which the input vector
was applied.

The bidirectional associative memory (BAM) is heteroassocia-
tive; that is, it accepts an input vector on one set of neurons and
produces a related, but different, output vector on another set.
Like the Hopfield net, the BAM is capable of generalization, pro-
ducing correct outputs despite corrupted inputs. Also, adaptive
versions can abstract, extracting the ideal from a set of noisy exam-
ples. These characteristics are strongly reminiscent of human men-
wl functions and bring artificial neural networks one step closer to
an emulation of the brain.

113

8

Adaptive Resonance
Theory

The human brain performs the formidable task of sorting a contin-
nous flood of sensory information received from the environment.
l'rom a deluge of trivia, it must extract vital information, act upon
it, and perhaps file it away in long-term memory. Understanding
human memorization presents serious problems; new memories
Are stored in such a fashion that existing ones are not forgotten or
modified. This creates a dilemma: how can the brain remain plas-
lic, able to record new memories as they arrive, and yet retain the
stability needed to ensure that existing memories are not erased or
corrupted in the process?

Conventional artificial neural networks have failed to solve the
stability—plasticity dilemma. Too often, learning a new pattern
crases or modifies previous training. In some cases, this is unim-
portant. If there is only a fixed set of training vectors, the network
can be cycled through these repeatedly and may eventually learn
them all. In a backpropagation network, for example, the training
vectors are applied sequentially until the network has learned the
entire set. If, however, a fully trained network must learn a new
lraining vector, it may disrupt the weights so badly that complete
retraining is required.

In a real-world case, the network will be exposed 1o a constantly
changing environment; it may never see the same training vector
twice. Under such circumstances, 2 backpropagation network will
often learn nothing; it will continuously modify its weights to no
avail, never arriving at satisfactory settings,

127

128 Neural Computing: Theory and Peactlce

Lven worse, Carpenter and Grossberg (1980) have shown eximes
ples of a network in which only four training patterns, presented
cyclically, will cause network weights to change continuously,
never converging. This temporal instability is one of the main
factors that led Grossberg and his associates to explore radically
different configurations. Adaptive resonance theory, or ART, is one
result of research into this problem (Carpenter and Grossberg
1987a; Grossberg 1987).

ART networks and algorithms maintain the plasticity required to
learn new patterns, while preventing the modification of patterns
that have been learned previously. This capability has stimulated a
great deal of interest, but many people have found the theory
difficult to understand. The mathematics behind ART are compli-
cated, but the fundamental ideas and implementations are not. We
concentrate here on the actual operation of ART; those who are
more mathematically inclined will find an abundance of theory in
the references. Our objective is to provide enough concrete infor-
mation in algorithmic form so that the reader can understand the
basic ideas and, perhaps, write computer simulations to explore
the characteristics of this important network.

ART ARCHITECTURE

Adaptive resonance theory is divided into two paradigms, each
defined by the form of the input data and its processing. ART-1 is
designed to accept only binary input vectors, whereas ART-2, a
later development that generalizes ART-1, can classify both binary
and continuous inputs. Only ARI-1 is presented in this volume.
The reader interested in ART-2 is referred to Carpenter and Gross-
berg (1987b) for a complete treatment of this significant develop-
ment. For brevity, ART-1 is referred to as ART in the paragraphs that
follow.

An Overview of ART

The ART network is a vector classifier. It accepts an input vector
and classifies it into one of a number of categories depending upon

Adaptlve Resonance Theory 129

which of a number of stored patterns it most resembles. Its classifi-
cation decision is indicated by the single recognition layer that
fires (see Figure 8-1). If the input vector does not match any stored
pattern, a4 new category is created by storing a pattern that is like
the input vector. Once a stored pattern is found that matches the
input vector within a specified tolerance (the vigilance), that pat-
(ern is adjusted (trained) to make it still more like the input vector.

No stored pattern is ever modified if it does not match the cur-
rent input pattern within the vigilance tolerance. In this way, the
stability—plasticity dilemma is resolved; new patterns from the en-
vironment can create additional classification categories, but a
new input pattern cannot cause an existing memory to be changed
unless the two match closely.

A Simplified ART Architecture

ligure 8-1 shows a simplified ART network configuration drawn as
five functional modules. It consists of two layers of neurons la-
heled ““comparison’ and ‘‘recognition.” Gain 1, Gain 2, and Reset
provide control functions needed for training and classification.
Before proceeding to the network’s overall function, it is neces-

N L ,% RECIAGNITION

—GalNE Ea Ciiep <
R
= L
L |+ .| coMPaRISON _
H[CQINJT | AYER 4 E’ESET “— VIGILANCE

X

Figure 8-1. Simplified Adaptive Resonance Theory Network

130 Neural Computing: Theory and Practice

sary to understand the internal operation of the modules; the dis-
cussion that follows describes each of them.

Comparison Layer

The comparison layer receives the binary input vector X and ini-
tially passes it through unchanged to become the vector C. In a
later phase, binary vector R is produced from the recognition layer,
modifying C as described below. ’

Each neuron in the comparison layer (see Figure 8-2) receives
three binary inputs (zero or one): (1) a component x; from the
input vector X; (2) the feedback signal P, the weighted sum of the
recognition layer outputs; and (3) an input from the gain signal
Gain 1 (the same signal goes to all neurons in this layer).

To output a one, at least two of a neuron’s three inputs must be
one; otherwise, its output is zero. This implements the “two-
thirds rule,” described by Carpenter and Grossberg (1987b). Ini-

Figure 8-2. Simplified Comparison Layer

Adaptive Resonance Theory 1351

tally, gain signal Gain 1 is sct to one, providing one of the needed
inputs, and all components of the vector R are set to zero; hence,
vector C starts out identical to the binary input vector X.

Recognition Layer

T'he recognition layer serves to classify the input vector. Each rec-
ognition layer neuron has an associated weight vector B,. Only the

‘neuron with a weight vector best matching the input vector

“fires’’; all others are inhibited.

As illustrated in Figure 8-3, a neuron in the recognition layer
responds maximally when the vector € from the comparison layer
matches its set of weights, hence, these weights constitute a stored
pattern or exemplar, an idealized example, for a category of input
vectors. These weights are real numbers, not binary valued. A bina-
ry version of the same pattern is also stored in a corresponding set
of weights in the comparison layer (sce Figure 8-2); this set con-

Figure 8-3. Simplified Recognition Layer

132 Neural Computing: Theory and Practice

sists of those weights that connect to a specific recognition-layer
neuron, one weight per comparison-layer neuron.

In operation, each recognition-layer neuron computes a dot
product between its weights and the incoming vector C. The neu-
ron that has weights most like the vector C will have the largest
output, thereby winning the competition while inhibiting all other
neurons in the layer.

As shown in Figure 8-4, the neurons in the recognition layer are
interconnected by a lateral-inhibition network. In the simplest case
(the only one considered in this volume), this ensures that only
one neuron ‘‘fires’” at a time (i.e., only the neuron with the highest
activation level will output a one; all others will be zero). This
competitive, winner-take-all response is achieved by connecting a
negative weight £, from each neuron’s output 7; to the input of the
other neurons. Thus, if a neuron has a large output it inhibits all
other neurons in the layer. Also, each neuron has a positive weight
from its output to its own input. If 2 neuron’s output is at a one
level, this feedback tends to reinforce and sustain it.

Gain 2

G2, the output of Gain 2, is one if input vector X has any compo-
nent that is one. More precisely, G2 is the logical “‘or”” of the
components of X.

Figure 8-4. Lateral Inhibition-Recognition Layer

Adaptlve Resonance Theory 134

Gain |

Like G2, the output of Gain 1 is one if any component of the
hinary input vector X is one; however, if any component of R is
one, G1 is forced to zero. The table that follows shows this rela-
tionship:

“Or’ of X “Or” of R
Components Components G2

0 0

1 0 1
1 1 0
0 1 0

Reset

The reset module measures the similarity between vectors X and
C. If they differ by more than the vigilance parameter, a resct signal
is sent to disable the firing neuron in the recognition layer. '

In operation, the reset module calculates similarity as the ratio
of the number of ones in the vector C to the number of ones in the
vector X. If this ratio is below the vigilance parameter level, the
reset signal is issued.

ART Classification Operation

The ART classification process consists of three major phases: rec-
ognition, comparison, and search.

The Recognition Phase

Initially, no input vector is applied; hence, all components of input
vector X are zero. This sets G2 to zero, thereby disabling all recog-
nition-layer neurons and causing their outputs to be zero. Because
all recognition-layer neurons start out in the same state, all have an
equal chance to win the subsequent competition.

134 Neural Computing: Theory and Practice

The vector to be classified, X, is now applied. It must have one
or more components that are one, thereby making both G1 and G2
equal to one. This *'primes” all of the comparison-layer neurons,
providing one of the two inputs required by the two-thirds rule,
thereby allowing a neuron to fire if the corresponding component
of the X input vector is one. Thus, during this phase, vector Cis an
exact duplicate of X.

Next, for each neuron in the recognition layer a dot product is
formed between its associated weight vector B; and the vector C
(see Figure 8-4). The neuron with the largest dot product has
weights that best match the input vector. It wins the competition
and fires, inhibiting all other outputs from this layer. This makes a
single component 7, of vector R (see Figure 8-1) equal to one, and
all other components equal to zero.

To summarize, the ART network stores a set of patterns in the
weights associated with the recognition-layer neurons, one for
each classification category. The recognition-layer neuron with
weights that best match the applied vector fires, its output be-
comes one, and all other outputs from this layer are forced to zero.

The Comparison Phase

The single neuron firing in the recognition layer passes a one back
to the comparison layer on its output signal 7;. This single one may
be visualized as fanning out, going through a separate binary
weight £, to each neuron in the comparison layer, providing each
with a signal p,, which is equal to the value of #; (one or zero) (see
Figure 8-5).

The initialization and training algorithms ensure that each weight
vector 7 consists of binary valued weights; also, each weight vector
B, constitutes a scaled version of the corresponding weight vector
T,. This means that all components of P, the comparison-layer exci-
tation vector, are also binary valued.

Since the vector R is no longer all zeros, Gain 1 is inhibited and
its output set to zero. Thus, in accordance with the two-thirds
rule, the only comparison-layer neurons that will fire are those
‘that receive simultaneous ones from the input vector X and the
vector P.

Adaptive Resonance Theory 135

PR NG

Recoagnition Layer Neuron]

b

SIMPLIFIED
< COMPARISON
LAYER

G

Figure 8-5. Signal Path fora single-Firing Recognition-Layer Neuron

In other words, the top-down feedback from the recognition
layer acts to force components of C to zero in cases in which the
input does not match the stored pattern, that is, when X and P do
not have coincident ones.

If there is a substantial mismatch between the X and P (few
coincident ones), few neurons in the comparison layer will fire
and C will contain many zeros, while X contains ones. This indi-
cates that the pattern P being fed back is not the one sought and
the neuron firing in the recognition layer should be inhibited. This
inhibition is performed by the reset block in Figure 8-1, which
compares the input vector X to the C vector and causes tt.lel reset
signal to occur if their degree of similarity is less than the vigilance
level. The effect of the reset is to force the output of the firing
neuron in the recognition layer to zero, disabling it for the dura-
tion of the current classification.

The Search Phase

If there is no reset signal generated, the match is adequate and the

136 Neural Computing: Theory and Practice

classification is finished. Otherwise, other stored patterns must be
searched to seek a better match. In the latter case, the inhibition of
the firing neuron in the recognition layer causes all components of
the vector R to return to zero, G1 goes to one, and input pattern X
once again appears at C. As a result, a different neuron wins in the
recognition layer and a different stored pattern P is fed back to the
comparison layer. If P does not match X, that firing recognition-
layer neuron is also inhibited. This process repeats, neuron by
neuron, until one of two events occurs:

1. A stored pattern is found that matches X above the level of
the vigilance parameter, that is, > p. If this occurs, the net-
work enters a training cycle that modifies the weights in both
T, and B, the weight vectors associated with the firing recog-
nition layer neuron.

2. All stored patterns have been tried, found to mismatch the
input vector, and all recognition-layer neurons are inhibited.
If this is the case, a previously unallocated neuron in the
recognition layer is assigned to this pattern and its weight
vectors B, and T, are set to match the input pattern.

Performance Issues

The network described must perform a sequential search through
all of its stored patterns. In an analog implementation, this will
occur very rapidly; however, it can be a time-consuming process in
a simulation on a conventional serial digital computer. If, however,
the ART network is implemented with parallel processors, all dot
products in the recognition layer can be performed simultaneous-
ly. In this case, the search will be very rapid.

The stabilization titme required for the lateral-inhibition network
can also be lengthy in a serial digital computer. For lateral inhibi-
tion to sclect 2 “‘winner,” all neurons in the layer are involved in
simultancous computation and communication. This can require a
substantial amount of computation before convergence occurs. A
feedforward lateral-inhibition network as used in the neocogni-
tron can substantially reduce this time (see Chapter 10).

Adaptive Resonance Theory 147
ART IMPLEMENTATION
Overview

ART, as it is generally found in the literature, is something more than
A philosophy, but much less concrete than a computer program.
'his has allowed a wide range of implementations that adhere to .the
spirit of ART, while they differ greatly in detail. The imple.mentatxon
(hat follows is based on Lippman (1987), with certain aspects
changed for compatibility with Carpenter and Gros:sberg -(1987:1)
and the conventions of this volume. This treatment 1§ typical, but
other successful implementations differ greatly.

ART Operation

Considered in more detail, the operation of an ART system consists
of five phases: initialization, recognition, comparison, search, and
training.

Initialization

Before starting the network training process, all weight Vect9r§ ,Bf
and T, as well as the vigilance parameter p must be set to initial
values. o .

The weights of the bottom-up vectors B; are all initialized to the
same low value. According to Carpenter and Grossberg (1987a),
this should be

b, <LKL-1+ m) foralli,j (8-1)

where _
m = the number of components in the input vector

[=4 constant > 1 (typically, L =2)

This value is critical; if it is too large the network can allocate all
recognition-layer neurons to 4 single input vector.
The weights of the top-down vectors T, are all initialized to 1, 50

138 Neural Computing: Theory and Practice
t,=1 forally, i (8-2)

This value is also critical; Carpenter and Grossberg (1987a) prove
that top-down weights that are too small will result in no matches
at the comparison layer and no training.

The vigilance parameter p is set in the range from 0 to 1, depend-
ing upon the degree of mismatch that is to be accepted between
the stored pattern and the input vector. At a high value of p, the
network makes fine distinctions. On the other hand, a low value
causes the grouping of input patterns that may be only slightly
similar. It may be desirable to change the vigilance during the
training process, making only coarse distinctions at the start, and
then gradually increasing the vigilance to produce accurate catego-
rization at the end.

Recognition

Application of an input vector X initiates the recognition phase.
Because initially there is no output from the recognition layer, G1
is set to 1 by the “‘or” of X, providing all comparison-layer neu-
rons with one of the two inputs needed for it to fire (as required by
the two-thirds rule). As a result, any component of X that is one
provides the second input, thereby causing its associated compari-
son-layer neuron to fire and output a one. Thus, at this time, the
vector C will be identical to X.

As discussed previously, recognition is performed as a dot prod-

uct for each neuron in the recognition layer, and is expressed as
follows:

NET; = (B, - C) (8-3)

where
B, = the weight vector associated with recognition-layer neu-
ron f
C = the output vector of the comparison-layer neuron; at this
time, Cis equal to X
NET, = the excitation of neuron j in the recognition layer

Fis the threshold function that follows:

Adaptive Resonance Theory 139

ouT; =1 it NET, > T (8-4)
0 otherwise

where 1'is a threshold.

Lateral inhibition is assumed to exist but is ignored here to sim-
plify these equations. It ensures that only the recognition-layer
neuron with the highest value for NET will have an output of one;
all others will output zero. It is quite possible to devise systems 1n
which more than one recognition-layer neuron fires at a time, but
this is beyond the scope of this volume.

Comparison

At this point, the feedback signal from the recognition layer cause.s
(1 to go to zero; the two-thirds rule permits only those compari-
son-layer neurons to fire that have corresponding components of
the vectors P and X both equal to one.

The reset block compares the vector € to the input vector X,
producing a reset output whenever their similarity § isf ?elow the
vigilance threshold. Computing this similarity is Siﬂ]p.hfled by the
fact that both vectors are binary (all elements are either one or
zero). The procedure that follows computes the required measure

of similarity.

1. Call D the number of 1s in the X vector.
2 Call N the number of 1s in the C vector.

Then compute the similarity § as follows:
§=N/D (8-5)

For example, suppose that

X=1011101 thenD=5
C=0011101 thenN=4
S=N/D=0.38

§ will vary from 1 (perfect match) to 0 (worst mismatch). y
Note that the two-thirds rule makes C the logical “‘and’’ of the

140 Neural Computing: Theory and Practice

input vector X with the vector P. But P is equal 1o T, the weight
vector from the winning neuron. Thus, D may be found as the
number of 1s in the logical “and’ of T, with X.

Search

If the similarity § of the winning neuron is greater than the vigi-
lance, no search is required. If, however, the network has been
previously trained, application of an input vector that is not identi-
cal to any seen before may fire a recognition-layer neuron with a
match below the vigilance level. Due to the training algorithm, it is
possible that a different recognition-layer neuron will provide a
better match, exceeding the vigilance level, even though the dot
product between its weight vector and the input vector may be
lower. An example of this situation is shown below.

If the similarity is below the vigilance level, the stored patterns
must be searched, seeking one that matches the input vector more
closely, or failing that, terminating on an uncommitted neuron that
will then be trained. To initiate the search, the reset signal tempo-
rarily disables the firing neuron in the recognition layer for the
duration of the search, G1 goes to one, and a different recognition-
layer neuron wins the competition. Its pattern is then tested for
similarity and the process repeats until either a recognition-layer
neuron wins the competition with similarity greater than the vigi-
lance (a successful search), or all committed recognition-layer neu-
rons have been tried and disabled (unsuccessful search),

An unsuccessful search will automatically terminate on an un-
committed neuron, as its top-down weights are all ones, their ini-
tial values. Thus, the two-thirds rule will make the vector C identi-
cal to X, the similarity § will be one, and the vigilance will be
satisfied.

Training

Training is the process in which a set of input vectors are presented
sequentially to the input of the network, and the network weights
are so adjusted that similar vectors activate the same recognition-
layer neuron. Note that this is unsupervised training; there is no
teacher and no target vector to indicate the desired response.
Carpenter and Grossberg (1987a) distinguish two kinds of train-

Adaptive Resonance Theory 141

ing: slow and fast. In slow training, an input vector m:l-y be ;lppalic‘;!
so briefly that network weights do not have cnuugl.l umF to reach
their asymptotic values during 2 single Prescntatw_n. l"hus,‘ the
weights will be determined by the statistics of thf: mput‘ Veftors
rather than by the characteristics of any one. The dlfferentla.l equa-
tions of slow training describe the network dynamics during the
raining process. o
) l};;l;t Et,riziinirlg is a special case of slow tmining that a_pphes 11;1thc
input vectors are applied for a long enough pen_od of time to a Qw
the weights to approach their final values. In this case, the tral.nmg
formulas involve only algebraic equations. Also, tqp-down weights
assume only binary values rather than thle conufluou? ran%e rei«
quired in fast training. Only fast training 18 described in this vol-
ume; the interested reader can find an excellent treatment of the
more general, slow-training case in Carpenter and Grossberg
g
!)Tgillazraining algorithm that follows is applied in both successful
g successful searches. _ .
mgelt]?he vector of bottom-up weights B, (associated with th(? fir-
ing recognition-layer neuron 1) to the normalized values ot t111§
vector C. Carpenter and Grossberg (1987a) calculate these weights

as follows:
by =(L c,-)/(L =i Eck) (8-6)
3

where ‘ o
¢, = the ith component of the comparison-layer output vecto

j = the number of the winning recognit-ion-iayer ne.u.ron ‘

b, = the bottom-up weight in B, cormectmg‘ n_leuron { in the com-
' parison layer to neuron j in the recognition layer
[=a constant > 1 (typically 2)

Weights in the vector T, that are associated with the r%cw sFored
pattern are adjusted so that they equal the corresponding binary
values in the vector C:

t,=c, foralli (8-7)

Ji

i i inni i in the recogni-
where £, is the weight from the vammng neuron j g
tion layer neuron { in the comparison layer.

142 Neural Computing: Theory and Practice

AN ART TRAINING EXAMPLE

In outline, the network is trained by adjusting the top-down and
bottom-up weights so that the application of an input pattern
C:fluses the network to activate the recognition-layer neuron asso-
ciated with a similar stored pattern. Furthermore, training is ac-
complished in a fashion that does not destroy patterns that were
leamled previously, thereby preventing temporal instability. This
Fask is controlled by the level of the vigilance parameter. A novel
input pattern (one that the network has not seen before) will fail to
match stored patterns within the tolerance imposed by the vigi-
¥ance level, thereby causing a new stored pattern to be formed. An
input pattern sufficiently like a stored pattern will not form a new
exemplar; it will simply modify one that it resembles. Thus, with a
suitable setting of the vigilance level, new input patterns ’already
learned and temporal instability are avoided.

Figure 8-6 shows a typical ART training session. Letters are
shown as patterns of small squares on an 8-by-8 grid. Each square

T [TTITII

T Sumuanunl

A]TITj EEEEEEN] TITTT

?‘ﬂTTr:i E aHll_1

|) O k\HlI:E

SmEmzaz] [maaEEs | N T
S 12 ¢ E:EED
Hm %m:\:cm Eaneam B
:TITT? _‘l‘rr‘l‘r‘r'l (TTT [T
Hrrm = mana! Fm
1 (NENEEEE] Ol EJDI\:D

TTTIT
TTTTTT

I T ‘ N I oo
RERE] TTTT [TiT1
]:EEB:D I B 1 0O i

Figure 8-6. ART Training Session

Adaptlve Resonance Theory 143

on the left represents a component of the X vector with a value of
one; all squares not shown are cnmp(mchts with values of zero.
Letters on the right represent the stored patterns; each is the set of
(he values of the components of a vector T,

First, the letter C is input to the newly initialized system. Be-
cause there is no stored pattern that matches it within the vigilance
limit, the search phase fails; a new neuron is assigned in the recog-
nition layer, and the weights T, are set to equal the corresponding
components of the input vector, with weights B,becoming a scaled
version.

Next, the letter B is presented. This also fails in the search phase
and another new neuron is assigned. This is repeated for the letter
E. Then, a slightly corrupted version of the letter E is presented to
the network. It is close enough to the stored E to pass the vigilance
test, so it is used to train the network. The missing pixel in the
lower leg of the E produces a zero in the corresponding position of
the vector C, causing the training algorithm to set that weight of
the stored pattern to zero, thereby reproducing the break in the
stored pattern. The extra isolated square does not corrupt the
stored pattern, as there is no corresponding one introduced into it.

The fourth character is an E, with two different errors. This fails
to match a stored pattern (5 is less than the p), so the search fails
and a new neuron is assigned.

This example illustrates the importance of setting the vigilance
parameter correctly. If the vigilance is too high, most patterns will
fail to match those in storage and the network will create a new
neuron for each of them. This results in poor generalization, as
minor variations of the same pattern become separate catcgories.
These categories proliferate, all available recognition-layer neurons
are assigned, and the system's ability to incorporate new data halts.
Conversely, if the vigilance is 100 low, totally different letters will
be grouped together, distorting the stored pattern until it bears
little resemblance to any of them.

Unfortunately, there is no theory to guide the setting of the
vigilance parameter; one must first decide what degree of differ-
ence between patterns will constitute a different category. The
boundaries between categories are often “fuzzy’’ and a priori de-
cisions on a large set of input examples may be prohibitively diffi-
cult.

144 Neural Computing: Theory and Practice

Carpenter and Grossberg (1987a) proposc a feedback process to
adjust the vigilance, whereby incorrect categorization results in
“punishment’ from an outside agency that acts to raise the vigi-
lance. Such a system requires a standard to determine if the classifi-
cation was incorrect.

CHARACTERISTICS OF ART

The ART system has a number of important characteristics that are
not obvious. The formulas and algorithms may seem arbitrary,
whereas in fact, they have been carefully chosen to satisfy theo-
rems regarding system performance. This section discusses some
of the implications of the AR1 algorithms, thereby showing the

reasoning behind the design of the initialization and training for-
mulas.

Top-Down Weight Initialization

From the earlier training example it may be seen that the two-
thirds rule makes vector C the “‘and’ between the input vector X,
and the winning stored vector T,. That is, only if corresponding
components of each are one will that component of C be one.
{\ftt:r training, these components of T, remain one; all others are
forced to zero. '

This explains why the top-down weights must be initialized to
ones. If they were initialized to zeros, all components of vector C
would be zero regardless of the input vector components, and the
training algorithm would prevent the weights from being anything
but zero.

"l‘r;lining may be viewed as a process of “‘pruning’’ components
of the stored vectors that do not match the input vectors. This
process is irreversible; that is, once a top-down weight has been set
to zero, the training algorithm can never restore it to a one.

This characteristic has important implications for the learning
process. Suppose that a group of closely related vectors should be
classified into the same category, indicated by their firing the same
recognition-layer neuron. If they are presented sequentially to the

Adaptive Resonance Theory 14%

network, the ficst will be assigned a recognition-layer neuron; its
weights will be trained to mateh the input vector. ‘Training with the
rest of the vectors will set the weights of the stored vector to zero
in all positions where they coincide with zeros from any of these
input vectors. Thus, the stored vector comes to represent the logi-
cal intersection of all of the training vectors and may be thought of
as encoding the essential features of a category of input vectors. A
new vector consisting only of these essential features will be as-
signed to this category; thus, the network correctly recognizes a

pattern it has never seen before, an ability reminiscent of human

abstraction.

Bottom-Up Weight Adjustments

The weight adjustment formula (Equation 8-6, repeated here for
reference) is central to the operation of the ART system.

by= (L c,)/(L e o Eca (8-6)

The summation in the denominator represents the number of
ones in the output of the comparison layer. As such, this number
may be thought of as the *'size” of this vector, With this interpreta-
tion, large C vectors produce smaller weight values for b, than do
small C vectors. This “‘self-scaling’” property makes it possible to
separate two vectors when one is a subset of another; that is, its
ones are in some but not all of the positions of the other.

To demonstrate the problem that results if the scaling shown in
Equation 8-6 is not used, suppose that the network has been
trained on the two input vectors that follow, with a recognition-
layer neuron assigned to each.

X, =10000
X,=11100

Note that X, is a subset of X,. Without the scaling property; bot-
tom-up weights would be trained to the same values for each pat-
tern. If this value were chosen to be 1.0, the weight patterns that
follow would result.

146 Neural Computlng: Theory and Practice

T,=B,=10000
T,=B,=11100

If X, is applied once more, both recognition-layer neurons receive
the same activation; hence, likely as not, neuron 2, the wrong one,
will win the competition.

In addition to making an incorrect classification, training can be
destroyved. Because T, feeds down 1 110 0, only the first 1 is
matched by the input vector, C becomes 1 0 0 0 0, vigilance is
satisfied, and training sets the second and third 1s of T, and B, to
0, destroying the trained pattern.

Scaling the bottom-up weights according to Equation 8-6 pre-
vents this undesirable behavior. Suppose, for example, that Equa-

tion 8-6 is used with L =2, thereby producing the formula that
follows:

by=(2 c,-)/(1 + Eq,)

Bottom-up weights will now train to the values

B=10 000
B,=1212%200

Applying X, produces an excitation of 1.0 on recognition-layer
neuron 1, but only 1/2 for neuron 2; thus, neuron 1 (correctly)
wins the competition. Similarly, applying X, produces excitation
levels of 1.0 for neuron 1, but 3/2 for neuron 2, again selecting the
correct winner.

Bottom-Up Weight Initialization

Initializing the bottom-up weights to low values is essential to the
correct functioning of the ART system. If they are too high, input
vectors that have already been learned will activate an uncommit-
ted recognition-layer neuron rather than the one that has been
previously trained. The formula for bottom-up weight assign-
ments, Equation 8-1, is repeated here for reference:

Adapilve Resonance Theory 147

by <LiL~-1+m) for all 7, f (8-1)

Setting these weights to low values ensures that an uncommitted
neuron will not “overpower” a trained recognition-layer neuron.
Using our previous example with L= 2and m=5, b;<1/3, so we
arbitrarily set b, =1/6. With these weights, applying a vector for
which the network has been trained will cause the correctly
trained recognition-layer neuron to win over an uncommitted neu-
ron. For example, on an uncommitted neuron, X, would produce
an excitation of 1/6, while X, would produce 1/2; both are below
the excitation produced on the neuron for which they were
trained.

Searching

It may appear that direct access obviates the need for a search
except when an uncommitted recognition-layer neuron is to be as-
signed. This is not the case; application of an input vector that is
similar, but not identical, to one of the stored patterns may not on
the first trial select a recognition-layer neuron such that the simi-
larity § exceeds the vigilance p, even though another neuron will.

As in the preceding example, assume that the network has been
trained on the two vectors that follow:

X,=10000
X,=11100
with bottom-up weight vectors trained as follows:
B=10 0 00
B,=1/24Y214200

Now apply an input vector X, = 1 1 0 0 0. In this case, the excita-
tion to recognition-layer neuron 1 will be 1.0, while that of neuron
2 will be only 2/3. Neuron 1 will win (even though it is not the best
match), C willbe setto 1 0 0 0 0, and the similarity § will be 1/2. If
the vigilance is set at 3/4, neuron 1 will be disabled, and neuron 2
will now win the competition. C will now become 1 1000,3
will be 1, the vigilance will be satisfied, and the search will stop.

148 Neural Computing: Theory and Practlee
Theorems of ART

In Carpenter and Grossberg (1987a), several theorems are proven
that show powerful characteristics to be inherent to the system,
The four results that follow are among the most important:

1. After training has stabilized, application of one of the train-
ing vectors (or one with the essential features of the category) will
activate the correct recognition-layer neuron without searching.
This ‘‘direct-access’’ characteristic implies rapid access to previ-
ously learned patterns.

2. The search process is stable. After the winning recognition-
layer neuron is chosen, the system will not switch from one neu-
ron to another as a result of the top-down vector’s modification of
C, the output of the comparison layer; only reset can cause this
change.

3. Similarly, training is stable. Training will not cause a switch
from one recognition-layer neuron to another.

4. The training process terminates. Any sequence of arbitrary
input vectors will produce a stable set of weights after a finite
number of learning trials; no repetitive sequence of training vec-
tors will cause ART’s weights to cycle endlessly.

DISCUSSION

ART is an interesting and important paradigm. It solves the stabili-
ty—plasticity dilemma and performs well in other regards. The ART
architecture was designed to be biologically plausible; that is, its
mechanisms are intended to be consistent with those of the brain
(as we understand them). [t may fail, however, to simulate the
distributed storage of internal representations, which many see as
an important characteristic of the cercbral function. ART’s exem-
plars represent “‘grandmother cells’’; loss of one cell destroys an
entire memory. In contrast, memorics in the brain seem to be dis-
tributed over substantial regions; a recollection can often survive
considerable physical damage without being lost entirely.

It seems logical to study architectures that do not violate our
understanding of the brain’s organization and function. The hu-

Adaptive Resonance Theory 149

man brain constitutes an existence proof that a solution to the
pattern-recognition problem is possible. It seems sensible to emu-
late this wor'king system if we wish to duplicate its pecformance.
However, a counterargument reécounts the history of pow.vered
flight; man failed to get off the ground until he stopped trying to
imitate the moving wings and feathers of the birds.

References

Carpenter, G., and Grossberg, S. 1986. Neural dynarr?ics _of category leaﬁn-
ing and recognition: Attention, memory consolidation, and afnnes{a.
In Brain Structure, Learning and Memory (AAAS Symposium Se-
ries), eds. J. Davis., R. Newburgh, and E. Wegman. B
1987a. A massively parallel architecture fora self—orgamz%ng neu-
ral pattern recognition machine. Computer Vision, Graphics, and
Image Processing 37:54-115. N
- 1987b. ART 2: Self-organization of stable category recogmition
codes for analog input patterns. Applied Optics 26(2':5);491?—59.
Grossberg, §. 1987. Competitive learning: From im‘eractxve activation to
adaptive resonance. Cognitive Science 11 ;23—6;5. _
Lippman, R. P. 1987. An introduction to computing Tmth neural n'ets.
JEEE Transactions on Acoustics, Speech and Signal Processiig,

April, pp. 4-22.

Appendix A

The Biological
Neural Network

THE HUMAN BRAIN: A BIOLOGICAL MODEL
FOR ARTIFICIAL NEURAL NETWORKS

The structure of artificial neural networks has been modeled after
the organization of the human brain. As we point out, this similari-
ty is actually slight, yet even this modest emulation of the brain has
yielded impressive results. For example, artificial neural networks
exhibit such brainlike characteristics as their ability to learn from
experience, generalize on their knowledge, perform abstraction,
and make errors, all more characteristic of human thought than of
human-made computers.

With the successes achieved using a crude approximation of the
brain, it would seem reasonable to expect further advances from a
more accurate model. Developing such a model requires 2 detailed
understanding of the structure and function of the brain. This, in
turn, demands a complete characterization of the neurons that
comprise its computational and communication elements. Unfor-
tunately, this information is by no means complete; much of the
brain remains shrouded in mystery. Major pathways have been laid
out and certain areas identified by function, but nothing approach-
ing a complete ‘‘schematic’” exists. The biochemistry of the neu-
ron, the brain’s fundamental building block, continues to yield its
secrets reluctantly. Each year brings new information regarding the
neuron’s electrochemical behavior, always in the direction of ex-

189

¢ :
190 Neural Computing: Theory and Practice

Posing new levels of complexity. One thing is certain: the neuron
is far more intricate than was suspected a few years l:lg() and n¢
one claims to have a full understanding of its operation - ,
l?espite our limited knowledge, enough is known [(‘) make the
brain a model worth studying in our quest for better artificial
neural networks. Through eons of trial and error, evolution h"«;
probably arrived at a structure optimally suited)t() solviﬁ 1 l]'l‘-
problems that commonly confront the human orgallie;n It i “'
pnlikely that we will invent a better solution. By care%uli‘y elknLT]Tlls
ing the brain, we are availing ourselves of nature’s research (at o
COSst) -and will probably reproduce more of the brain’sl abilities "
This appendix contains the barest outline of the current kﬁ;:)wl
f:dgc regarding the structure and function of the brain. Although
is much abbreviated, every effort has been made to pr‘eqerve ::ic)
racy‘. The sections that follow should serve to illuminat;e the infou-
mation in the text of this volume and I hope will stimulate intf:re:;

1r.1 the biological system and generate ideas that lead to better artifi-
cial neural networks.

ORGANIZATION OF THE HUMAN BRAIN

A human brain contains over one hundred billion computing ele
fnents called neurons. Exceeding the stars in our Milky Wa ilax _
in number, these neurons communicate throughout the lzogcl by
way .Of nerve fibers that make perhaps one hundred trillion zon}i
nections called synapses. This network of neurons is responsible
ff)r all of the phenomena that we call thought, emotion, and cogni-
an, as well as for performing myriad sensorimotor an’d autongm
1.(: functions. The exact manner in which this is accomplished i_
E:;le un;lers;ood, but much of the physiological structure has hee;
ed, and certai i :
me II;lIi)nec,l ind ::g:m functional areas are gradually yielding to de-
Th.e brain also contains a dense network of blood vessels that
’pr(?wde oxygen and nutrients to the neurons and othekrl ti;suee
I‘-hlS blood supply is connected to the main circulatory s qtertnt b 7\ -
highly effective filtration system called the blood—brai;zyl;aiﬂrie: z
protective mechanism that isolates the brain from ﬁotentiall 7 tOinC
substances found in the bloodstream. Isolation is maintai;ed by

Appendix A 191

the low permeability of the brain's blood vessels, and also by the
tight coverings of glial cells that surround the neurons. In addition
to their other functions, these glial cells provide the structural
scaffolding for the brain. Virtually all of the brain's volume not
occupied by neurons and blood vessels is filled with glial cells.

The blood-brain barrier is essential to the safety of the brain, but
it greatly complicates the administration of therapeutic drugs. It
also frustrates researchers, who would like to observe the effects
of a2 wide variety of chemicals on the brain’s function. Only a short
list of drugs designed to affect the brain will cross this barrier.
These drugs consist of small molecules capable of slipping through
the tiny pores in the blood vessels. To affect brain function, they
must then pass through the glial cell or be soluble in its membrane.
Few molecules of interest satisfy these requirements; molecules of
many therapeutic drugs arc stopped by this barrier.

The brain is the most concentrated consumer of energy in the
body. Comprising only 2% of body mass, at rest it uses over 20%
of the body’s oxygen. Even while we sleep, the energy consump-
tion continues unabated. In fact, there is evidence that it may
actually increase during REM-sleep periods. Consuming only 20
watts, the brain is an incredibly energy efficient organ. Computers,
with only a tiny fraction of the brain’s computational ability, con-
sume many thousands of watts and require elaborate provisions for
cooling to prevent their thermal self-destruction.

The Neuron

The neuron is the fundamental building block of the nervous Sys-
tem. It is a cell similar to all cells in the body; however, certain
critical specializations allow it to perform all of the computational
and communication functions within the brain.

As shown in Figure A-1, the neuron consists of three sections:
the cell body, the dendrites, and the axon, each with separate but
complementary functions.

Functionally, the dendrites receive the signals from other cells at
connection points called synapscs. From there, the signals arc
passed on to the cell body where they are essentially averaged with
other such signals. If the average overa short time interval is suffi-

192 Neural Computlng: Theory and Practice

CELL BODY

Figure A-1. Components of a Neuron

ciently large, the cell ““fires,” producing a pulse down its axon that
is passed on to succeeding cells. Despite its apparent simplicity,
this computational function accounts for most of the known activ-
ity of the brain. Underlying it, however, is 2 complex electrochemi-

cal system. We examine the functions of that system in the sections
that follow.

The Cell Body

The neurons in the adult brain do not regenerate; they must last a
lifetime. This means that all of the components must be continu-
ously replaced and the materials renewed as needed. Most of these
maintenance activities take place in the cell body, where a veritable
chemical factory manufactures a wide varicty of complex mole-
cules. In addition, the cell body manages the energy economy of
the neuron and regulates a host of other activities within the cell.

Appendix A 194

The outer membrane of the neuron’s cell body has the unique
capability of generating nerve impulses, a vital function of the
nervous system and central to its computational abilities.

Hundreds of neuron types have been identified, each with a
distinctively shaped cell body (see Figure A-2), which is usually 5
to 100 microns in diameter. Once thought to be mere random
variations, these differing morphological configurations are being
found to exhibit important functional specializations. Identifica-
tion of the functions of the various cell types is currently a topic of
intensive research and is essential to an understanding of the pro-
cessing mechanisms within the brain.

Dendrites

Most input signals from other neurons enter the cell by way of the
dendrites, a bushy branching structure emanating from the cell
body. On the dendrites are synaptic connections where signals are

BASKET
CELL

STELLATE
CELL

GRANULE
CELL

Figure A-2. 'Types of Neurons

194 Neural Computing: Theory and Practice

received, usually from other axons. In addition, there are a signifi
cant number of synaptic connections from axon to axon, axon (o
cell body, and dendrite to dendrite; the function of these is little
understood, but too widespread to be insignificant.

Unlike electrical circuits, there is usually no physical or electri-
cal connection made at the synapse. Instead, a narrow gap called
the synaptic cleft separates the dendrite from the transmitting ax-
on. Specialized chemicals that are released by the axon into the
synaptic cleft diffuse across to the dendrite. These chemicals,
called neurotransmitters, pass into specific receptor sites on the
dendrite and enter the cell body.

More than thirty neurotransmitters have been identified. Some
are excitatory and tend to cause the cell to “‘fire”” and produce an
output pulse. Others are inhibitory and tend to suppress such
a pulse. The cell body combines the signals received over its
dendrites and, if their resultant signal is above its threshold, a

pulse is produced that propagates down the axon to other neu-
rons.

The Axon

An axon may be as short as 0.1 millimeter, or it can exceed 1 meter
in length, extending to an entirely different part of the body. Near
its end, the axon has multiple branches, each terminating in a
synapse, where the signal is transmitted to the another neuron
through a dendrite or, in some cases, directly to a cell body. In this
way, a single neuron can generate a pulse that will activate or
inhibit hundreds or thousands of other neurons, each of which
can in turn (through its dendrites) be acted upon by hundreds or
thousands of other neurons. Thus, it is this high degree of connec-
tivity rather than the functional complexity of the neuron itself
that gives the neuron its computational power.

The synaptic connection that terminates a branch of the axon is
a small, bulbous expansion containing spherical structures called
synaptic vesicles, each of which contains a great number of neuro-
transmitter molecules. When a nerve impulse arrives down the
axon, some of these vesicles release their contents into the synap-

tic cleft, thereby initiating the process of interneuron communica-
tion (see Figure A-3).

i

Appendix A © 198

AR RANSME T TER - \ |

PRESYNAPTIC)
AXON P] 2

SYNAPTIC <

VESICLES

SYNAPTIC s
TERMINAL O
SYNAPTIC ;,f~"”"r”T
CLEFT
ROTRANSMITTE
R CEPTIR POSTSYNAPTIC
DENDRITE

Figure A-3. Synapsc

In addition to the all-or-nothing behavior just discussed, weakly
stimulated neurons also transmit electrochemical signals thfough
their interior with a graded responsc. Local in nature, these signals
die out rapidly with distance unless reinforced. Nature makes usc
of this cellular characteristic in the peripheral ncfrvous s.ystem'by
wrapping axons in Schwann cells, thercby foFm-mg an insulating
sheath known as myelin. This myelin sheath is interrupted every
millimeter or so along the axon at narrow gaps called the nodes of
Ranvier. Nerve impulses passing down an axon jump from node tp
node, propagating by 4 graded response mode i‘n bf:tv\.fe(-:n‘. In t'hls1
way, the axon nced not expend energy to mamtam its tha@lca
gradients along its entire length. Only at the exposed nodes is Fh;:
action potential regenerated; more efficient graded responses suf-
fice for intermediate transmission, In addition to saving energy,
other functions of this sheath have been discovergd. For exampl'e,
myelinated nerve fibers transmit signals more r'apl1dly. Staveral dl.‘?-
eases have been traced to the deterioration of this insulation, and it
is suspected as a contributor o others.

196 Neural Computing: Theory and Practice

The Cellular Membrane

Communication in the brain is of two types: chemical signals
across the synapses, and electrical signals within the neuron. It is

the wondertully complex action of the membrane that creates the

cell’s ability to produce and transmit both kinds of signals.

The cellular membrane is about five nanometers thick and con-
sists of two layers of lipid molecules. Embedded in the membrane
are various specific proteins that fall into five classes: pumps, chan-
nels, receptors, enzymes, and structural proteins.

.Pumps actively move ions across the cell's membrane to main-
tain concentration gradients. Channels pass ions selectively and
control their flow through the membrane. Some channels are
opened or closed by the prevailing electrical potential across the
membrane, thereby providing a rapid and sensitive means of mod-
ulating ionic gradients. Other types of channels are chemicaily
controlled, changing their permeability upon receipt of chemical
messengers.

Receptors are proteins that recognize and attach many types of
molecules in the cellular environment with great specificity. En-
zymes in or near the membrane speed a variety of chemical reac-
tions. Structural proteins interconnect cells and help to maintain
the structure of the cell itself.

- The cell’s internal sodium concentration is ten times lower than
its surroundings and its potassium concentration is ten times high-
er. These concentrations tend to equalize through leaks in the cell
due' to pores in the membrane. To maintain the necessary concen-
trations, a membrane protein, called a sodium pump, continuously
passes sodium out of the cell and potassium into the cell. Eacfl
pump moves roughly two hundred sodium atoms and one hundred
thirty potassium ions per second. A neuron may have millions of
such pumps, moving hundreds of millions of ions in and out of the
cell each second. The potassium concentration within the cell is
further increased by the presence of a large number of permanent-
ly 0p€'1‘1 potassium channels; that is, there are proteins that pass
potassium ions readily into the cell, but inhibit the passage of
sodium. The combination of these two mechanisms is responsible
for creating and maintaining the dynamic chemical equilibrium
that constitutes the resting state of the neuron.

The ionic concentration gradient across the cell membrane

Appendix A UL

causes the interior of the cell to assume an clectrical potential of
—70 millivolts relative to its surroundings. For the cell to fire
(producing an action potential), the synaptic inputs must reduce
this level to approximately — 50 millivolts. When this occurs, sodi-
um and potassium flows are suddenly reversed; within a milli-
second the interior of the cell becomes 50 millivolts positive rela-
tive to external environment. This polarity reversal spreads rapidly
through the cell, causing the nerve impulse to propagate down the
length of the axon to its presynaptic connections, When the im-
pulse arrives at the terminal of an axon, voltage-controlled calcium
channels are opened. This triggers the release of neurotransmittesr
molecules into the synaptic cleft and the process continues on to
other neurons. After generating an action potential, the cell enters
a refractory period of several milliseconds, during which it returns
to its resting potential in preparation for the generation of another
pulse.

Examining this process in greater detail, the initial receipt of
neurotransmitter molecules lowers the internal potential of the cell
from — 70 millivolts to — 50 millivolts. At this point, voltage-con-
trolled sodium channels are opened, allowing sodium to flood into
the cell. This further reduces the potential, increases the sodium
flow, and creates a self-reinforcing process that quickly propagates
to adjacent regions, reversing the local-cell potential from negative
to positive as it goes.

Shortly after opening, the sodium channels close and potassium
channels open. This allows potassium to flow out of the cell, and
the — 70 millivolt internal potential is restored. This rapid voltage
reversal constitutes the action potential, which propagates rapidly
along the full length of the axon like 2 row of tumbling dominoes.

The sodium and potassium channels respond to cell potentials;
hence, they are said to be voltage gated. Another type of channel is
chemically gated. It opens only when a specific neurotransmitter
molecule binds to a receptor, and it is quite insensitive to voltage.
Such channels are found in the postsynaptic connections on the
dendrites and are responsible for the neuron’s response to the
various neurotransmitter molecules. The acetylcholine protein
that combines with a receptor is one such chemically gated chan-
nel. When a packet of acetylcholine molecules is released into the
synaptic cleft, it diffuses to acetylcholine receptors embedded in
the postsynaptic membrane. These receptors (which are also chan-

198 Neuaral Computing: Theory and Practice

nels) then open, allowing free passage of both potassium and sodi-
um across the membrane. This produces a brief local reduction in
the negative internal potential of the cell (constituting a positive
pulse). Because they are short and small, many such channel open-

ings are required to cause the cell to produce an action potential,”

although each produces a graded response.

Acetylcholine receptors/channels pass both sodium and potassi-
um, thereby producing positive pulses. Such pulses are excitatory,
as they contribute to the production of an action potential. Other
chemically gated channels pass only potassium ions out of the cell,
and produce negative pulses; these are inhibitory, as they tend to
prevent the cell from firing.

Gamma-aminobutyric acid (GABA) is one of the most common
inhibitory neurotransmitters. Found almost exclusively in the
brain and spinal cord, it binds to a receptor with a channel that
selectively passes chloride ions. Upon entry, these ions increase
the negative potential of the cell, and thereby inhibit firing. GABA
deficiency has been associated with Huntington’s chorea, an inher-
ited neurological syndrome causing uncentrolled muscular mo-
tions. Unfortunately, the blood-brain barrier has so far prevented
augmentation of the GABA supply, and no other treatment has
been discovered. It seems probable that other neurological disor-
ders and mental illnesses will be traced to similar defects in the
neurctransmitters or their chemical precursors.

The firing rate of a neuron is determined by the cumulative
effect of a large number of excitatory and inhibitory inputs, rough-
ly averaged by the cell body over a short time interval. Receipt of
excitatory neurotransmitter molecules will increase the firing rate
of a neuron; a smaller number, or a mixture with inhibitory inputs
will reduce the firing rate. In this way, the neuron signal is pulse-
rate or frequency modulated (FM). This modulation method, wide-
ly used in communication engineering (FM radio is an example),
has proven to have significant advantages in noise rejection over
other techniques.

Research has disclosed a bewildering biochemical complexity in
the brain. For example, over thirty substances are thought to be
neurotransmitters, and there are a large number of receptors with
various response modes. Furthermore, the action of a particular
neurotransmitter molecule depends upon the type of receptor in
the postsynaptic membrane; the same neurotransmitter may be

Appendix A 199

excitatory at one synapse and inhibitory at another, Also, 2 seC
ond messenger’” system is at work in the cell, where receipt ‘()l A
large numbers ol ¢y-

neurotransmitter triggers the production of
clic adenosine triphosphate molecules, thereby producing a great-
ly amplified physiological response. B
Researchers always hope to find 2 simple pattern that unifies
complex and diverse observations. So far, this t?as not been the
case with neurobiological studies. Most discoveries have exposed
more ignorance than they have eliminated. One such result of neu-
ral research has been a rapid proliferation in the number and types
of electrochemical activities recognized to be at work in the blram;
the task remains to combine them into a coherent functional

model.

COMPUTERS AND THE HUMAN BRAIN

There are similarities between the brain and the dig-it'al computer:
both operate on electrical signals; both are a composu‘ion of a large
number of simple elements; and both perform functions that are,
broadly speaking, computational. There are, however, fundamen-
tal differences. Compared to the microsecond or even nanosecond
time scales of modern digital computation, nerve impulses are as-
toundingly slow. With each neuron requiring milhse@nds bt_a-
tween signal transmissions, the brain’s huge computa‘uon rate. is
achieved by a tremendous number of parallel computational units,
far beyond any proposed for a computer system. Error Ijat.CS repre-
sent ;{nother fundamental difference; the electror}ic digital com-
puter is inherently errot free, so long as its input 1§ perfer;tly cor-
rect and its hardware and software are intact. The _bralg often
produces best guesscs and approximations from pam‘ally incom-
plete and incorrect inputs. Frequently, it is Wrong_. But its error rate
has been adequate to ensure our survival for millions of‘ ‘years. '

The first digital computers were often referred to as “electronic
brains.’ Viewed in the light of our current knowledge about the
complexity of the brain, this was optimistic to say the least. 11‘1 any
case, the appellation is simply inappropriate. The two s‘ysfems
differ in every particular. They are optimi‘zed to solve different
types of problems, have fundamentally different structures, and
are evaluated by different criteria.

TET

200 Neural Computing: Theory and Practice

Some say artificial neural networks will someday duplicate the
function of the human brain. Before this is even thinkable, the
brain’s organization and function must be understood, a task that
probably will not be achieved in the near future. This volume

points out that current artificial neural networks are based upon a -

highly simplified model that ignores most of what is known about
the detailed functioning of the brain. It seems reasonable to expect
that a more accurate model would produce a closer emulation of
the brain’s operation.

Breakthroughs in artificial neural networks will require the
strengthening of their theoretical foundations. Theoretical ad-
vances, in turn, must be preceded by improved mathematical
methods, as research is seriously hampered by our inability to deal
with these systems in a quantitative manner. This fact is sobering
when one considers that the current limited level of mathematical
support has been achieved with monumental effort by some of the
world’s most brilliant researchers. In fact, the analytical problem is
extraordinarily difficult, involving as it does highly complex, non-
linear, dynamical systems. It may be that entirely new mathemati-
cal methods must be developed to cope with a system having the
complexity of the human brain; or perhaps no fully satisfactory
mathematics can ever be devised.

In spite of the problems, efforts to model the human brain con-
tinue to produce fascinating, tantalizing results that inspire further
effort. Successful models, based upon speculations about the
brain’s structure, lead neuroanatomists and neurophysiologists to
reexamine their observations, looking for corresponding struc-
tures and functions. Conversely, advances in the biological
sciences have led to modified and elaborated artificial models.
Simultaneously, engineers are applying the artificial models to real-
world problems and are producing encouraging results, despite the
lack of a full understanding.

The convergence of disciplines onto the problem of artificial
neural networks has brought a richness of inquiry that may be
unprecedented in the history of science. Biologists, anatomists,
physiologists, engineers, mathematicians, and even philosophers
are actively involved in the study. The problems are staggering, but
the goal is lofty: an understanding of human thought itself.

Appehdix B

Vector and Matrix
Operations

INTRODUCTION

Linear algebra comprises a large body of knowledge about vectors
and matrixes. This appendix presents only a small portion of the
notation and a few of the manipulations used in this field. Despite
the fragmentary nature of the treatment, it will prove highly useful
in the study of artificial neural networks. Vector notation reduces
complicated expressions to a few symbols, thereby clarifying the
principles and easing comprehension. Vector operations manipu-
late entire groups of data with a single symbol; thus, larger concep-
tual “chunks” can be handled without concern for the details.
Finally, vectors have geometric significance, a fact that permits
visualization of the concepts.

The sections that follow are intended for those who have never
studied linear algebra, and those who feel the need for a review
before launching into this volume. Little theory is presented; there
are many excellent texts on the subject, such as the one by Anton
(1977). Also, there is a highly accessible introductory treatment by
Jordan (1986) that is specifically intended for artificial neural net-
work studies.

VECTORS

Artificial neural network computations involve the manipulation
of ordered sets of numbers. An ordered set is simply a group of

201

210 Neural Computing: Theory and Practice

References

Anton, H. 1977, Elementary linear algebra. New York: Wiley.

Jordan, M. 1. 1986. An introduction to linear algebra in parallel distributed

ing. v 365-422.
processing. In Parallel distributed processing, vol. 1, pp. 365-4

Cambridge, MA: MIT Press.

Appendix C

Training
Algorithms

Artificial neural networks have been trained by a wide variety of
methods. Fortunately, most training techniques have been devel-
oped from common roots and share many characteristics. The pur-
pose of this appendix is to present a review of certain fundamental
algorithms, in terms of both their current applicability and their
historical significance. Given this perspective, other related algo-
rithms will be more easily understood and new developments can
be better comprehended and evaluated.

SUPERVISED AND UNSUPERVISED LEARNING

Training algorithms may be classified as supervised or unsuper-
vised. In supervised training. there is a teacher that presents input
patterns to the network, compares the resulting outputs with those
desired. and then adjusts the network weights in such a way as to
reduce the difference. It is difficult to conceive of such a teaching
mechanism in biological systems; hence. while this approach has
enjoyed much success in applications, it is disdained by those who
believe that artificial neural networks must ultimately use the same
mechanisms as the human brain.

Unsupervised training requires no teacher; input patterns are
applied, and the network self-organizes by adjusting its weights
according to a well-defined algorithm. Because no desired output

211

212 Neural Computing: Theory and Practice

is specified during the training process, the results are unpredict-
able in terms of firing patterns of specific neurons. What does
occur. however, is that the network organizes in a fashion that
develops emergent properties of the training set. For example,
input patterns may be classified according to their degree of simi-
larity, with similar patterns activating the same output neuron.

HEBBIAN LEARNING

The work of D. O. Hebb (1949) has provided the inspiration for
most of the training algorithms that have been subsequently devel-
oped. Prior to Hebb's work. it was generally recognized that learn-
ing in a biological system involved some physical change to the
neurons. but no one had a clear idea how this might actually take
place.

Based upon physiological and psvchological research, Hebb pre-
sented an intuitively appealing hypothesis about how a set of bio-
logical neurons might learn. His theory involved only local interac-
tions between neurons with no global teacher; hence, the training
is unsupervised. While his work did not include a mathematical
analysis, his ideas were so clear and compelling that they received
nearly universal acceptance. His book became a classic that is still
widely studied by those with a serious interest in the field.

Hebbian Learning Algorithm

In essence, Hebb proposed that a synapse connecting two neurons
is strengthened whenever both of those neurons firc. This may be
thought of as strengthening a synapsc according to the correlation
between the excitation levels of the neurons that it connects. For
that reason Hebbian learning is sometimes called correlation learn-
ing.

This idea is expressed in the equation that follows:

w (t+ 1)=1w,(t)+ NET, NET,

where
w, (1) = the svnaptic strength from neuron 7 to neuron fat tme /
NET, = the excitation level of the source neuron

NET, = the excitation level of the destination neuron

Appendix C 213

Hebb's concept answered the perplexing question of how learni
_could take place without a teacher. In the Hebbian svslc.m lc"ll‘:;::g
is a purely local phenomenon, involving only two ncur(l)ns‘ and gl
synapse; no global feedback system is required for the ncul*ul pati
terns to develop.

Subsequent work with Hebbian learning produced many suc-
cesses, but also disclosed its limitations: some patterns s-in; ly
could not be learned by this method. As a result there h;u'e hcf)ezl

numerous extensions and innovations, most of which owe a heavy
debt to the work of Hebb. ‘

Signal Hebbian Learning

As e AVE sec a g C e i1
A t\u have bccni the NET output of a simple artificial neuron is the
weighted sum of its inputs. This may be expressed as follows:

NET,= Y OUTu,

where
NET, = the net output of neuron j
OUT, = the output of neuron 7
w, = the weight connecting neuron 7 to neuron j

It can be shown that linear multilayer networks are no more
powerful than a single-layer network; the representational ability
.of the network can be improved only by introducing a nonlinear--
u_y into the transfer function of the neuron. A network using the
sigmoidal activation function with Hebbian learning is said to em-
ploy signal Hebbian learning. In this case. the Hebbian equations
are modified to the form that follows: L

OUT/=1/1+¢ ™']=FNET),)
w(t+ 1) =w,(H)+OUT, OUT

I

where

1

u',{(f) = the synaptic strength from neuron 7 to neuron Jat time ¢
OUT, = the output level of the source neuron = I’(NI‘I'I“)

Il

214 Neural Computing: Theory and Practice
OUT, = the output level of the destination neuron = F(NET))

Differential Hebbian Learning

A variant of signal Hebbian learning calculates the product of the
previous changes of the outputs to determine the weight change.
This method, called differential Hebbian learning, uses the equa-
tions that follow:

w,(t+ 1) = w, () + [OUT (1) = OUT (= DIOUT,(#) = OUT(£ - 1]

where
w, (1) = the synaptic strength from neuron 7 to neuron j at time
f
OUT(t) = the output level of the source neuron at time £
OUT(#) = the output level of the destination neuron at time ¢

INSTARS AND OUTSTARS

Many of the ideas commonly used in artificial neural networks can
be traced to the work of Stephen Grossberg; so it is with the instar
and outstar configurations (Grossberg 1974) that have found their
way into many network paradigms. An instar, as shown in Figure
C-1. consists of a neuron fed by a set of inputs through synaptic
weights. An outstar, shown in Figure C-z, 1s a neuron driving a sct
of weights. Instars and outstars can be interconnected to form
arbitrarily complex networks, and Grossberg proposed them as a
model for certain biological functions. Their starlike appearance
suggests their name: however, they are not usually diagrammed
this way in networks.

Instar Training

An instar performs pattern recognition; that is. it is trained to
respond to a specific input vector X and to no other. This training
is accomplished by adjusting its weights to be like the input vector.
The output of the instar is calculated as the weighted sum of its
inputs, as described in the preceding paragraphs. Viewed another
way, this calculation produces the dot product of the input vector
with the weight vector, a measure of similarity for normalized

Appendix C 215

Figure C-1. Grossberg Instar

.\‘(i‘ClUI‘S. Hence, the neuron comes to respond most strongly to the
input pattern for which it was trained.

The training operation is expressed in the formula that follows:
w{t+ 1)=w(f) +alx, - w,(h)]
where

w(f) = the weight from input x,
x, = the 7th input

i

a = the training rate coefficient, which starts around 0.1 and
is gradually reduced during the training process

Figure C-2. Grossberg Outstar

216 Neural Computing: Theory and Practice

When fully trained, application of the input vector X will acti-
vate the trained instar neuron. It may be observed that this can be
accomplished in a single training cycle if « is set to 1. While this is
true, it eliminates the ability of the instar to generalize. Properly
trained, the instar will respond not only to a single specific vector,
but to minor variations of that vector as well. This is accomplished
by gradually adjusting the neuron’s weights as it is trained over a
range of vectors representing normal variations of the desired vec-
tor. In this way, weights adjust to average values of the training
vectors and the neuron develops the ability to respond to any
member of that class.

Outstar Training

Whereas the instar fires whenever a specific input pattern is ap-
pli:d. the outstar has a complementary function; it produces a
desired excitation pattern to other neurons whenever it fires.

To train an outstar neuron, its weights are adjusted to be like a
desired target vector. The training algorithm can be expressed sym-
bolically as follows:

wit+ D=w)+ [y, - wih)

where 8 is a training rate coefficient that starts near 1 and is gradu-
ally reduced to zero during the training sequence. As with the
instar, the outstar weights are gradually trained over a set of vec-
tors representing normal variations of the ideal. In this way, the
output excitation pattern from the neuron represents a statistical
measure of the training set, and can actually converge to the ideal
vector when all it has scen are distorted versions.

PERCEPTRON TRAINING

In 1957, Rosenblatt (1959) developed a model that stimulated in-
tense interest. While severely limited in its original form. it has
become the basis for many of today’s more sophisticated super-
vised training algorithms. The perceptron is of such importance
that all of Chapter 2 is dedicated to its presentation; hence. this
treatment is brief, and in a somewhat different format.

The perceptron is a two-layer, nonrecurrent network of the type

Appendix C 217

shown in Figure C-3. It uses a supervised training algorithm;
hence, the training set consists of a set of input vectors, each with
its desired target vector. Input vector components take on a con-
tinuous range of values; target vector components are binary
valued (cither zero or one). After training, the network acceptiﬁ

a set of continuous inputs and produces the desired binary valued
outputs. ‘

Training is accomplished as follows:

1. Randomize all network weights to small numbers.

Apply an input training vector X and calculate the NET signal
from each neuron using the standard formula

[8%

NET, = E.\',u',,.
3. Apply the threshold activation function to the NET signal
from each neuron as follows:
OUT, = 1 if NET, is greater than threshold 6,

OUT, = 0 otherwise

L >,
//"‘\.
of
2 2 | =Y
\ / o
#
\“1___/
—
x ' =
. / Wi
S~

Figure C-3. A Single-Layer Neural Network

218 Neural Computing: Theory and Practice

where 8, is the threshold associated with neuron 7. (In the simplest
case, all neurons have the same threshold.)

4. Compute the error for each neuron by subtracting the actu-
al output from the target output:

error, = target, - OUT,

Modify each weight as follows:

W

wt+1)=1w,(t)+a.x,error,

6. Repeat steps 2 through 5 until the error is sufficiently low.

WIDROW-HOFF TRAINING

As we have seen, the perceptron was limited to binary outputs.
Widrow, along with his graduate student Hoff, extended the per-
ceptron learning algorithm to continuous outputs using the sig-
moidal function (Widrow 1959; Widrow and Hoff 1960). In addi-
tion, they developed a mathematical proof that the network will
eventually converge for any function it is capable of representing.
\K*’idr()w'.‘; first model, the Adeline, had a single-output neuron; his
later model, Madeline, extended this to the multi-output case.

The training equations of the Adeline are very similar to those of
the perceptron. The critical difference is in step 4, where the con-
tinuous NET signal is used rather than the binary-valued OUT. The
modified step 4 then reads:

4. Compute the error for each neuron, by subtracting the NET
signal from the target output:

error, = target, - NET,

STATISTICAL TRAINING METHODS

Chapter 5 covers statistical training methods in detail, so only an

overview is presented here.

Appendix C 219

single-layer networks are severely limited in the problems they
can solve, yet for many years no method was known to train multi-
layer networks. Statistical training provides a way out of this di-
lemma, albeit at a substantial cost in computational requirements.

By analogy, training a network by staristical means is like anneal-
ing a metal. To anneal a metal, the temperature is first raised until
the atoms of the metal move about freely. Then the temperature is
gradually reduced, and the atoms continuously seek a minimum
energy configuration. At some low temperature, the atoms freeze
into the lowest energy configuration possible.

In an artificial neural network, a global measure of nerwork
energy is defined as a function of a specified set of network varia-
bles. An artificial temperature variable is initialized at a high value,
thereby permitting network variables to make large random
changes. Changes that result in a reduction in global energy are
retained; those that increase energy are retained according to a
probubility function. The artificial temperature is gradually re-
duced over time, and the network converges to a global energy
minimum.

There are many variations on the statistical training theme. For
example, the global energy can be defined as the mean squared
error between the actual and desired output vectors of a training
set, and the variables can be network weights. In this case, the
network can be trained by starting at a high artificial temperature
and performing the following steps:

I. Apply a training vector to the input of the network, and
calculate the output according to the appropriate network
rules.

Calculate the mean squared error between the desired and

actual output vectors.

3. Change a network weight by a random amount. and then
calculate both the new output and the resulting error. If the
error is reduced, retain the weight change; otherwise, retain
the weight change with a probability determined by the
Boltzmann distribution. If not rewined, the weight is re-
turned to its previous value.

4. Repeat steps 1 through 3. gradually reducing the artificial
temperature.

2%

220 Neural Computing: Theory and Practice

If the size of the random weight change is selected according to
the Boltzmann distribution, convergence to a global minimum is
ensured only if the temperature varies inversely as the logarithm of
elapsed training time. This may result in intolerably long training
sessions, so a great deal of effort has been expended to find faster
training methods. By choosing the step size from the Cauchy dis-
tribution (as in Szu's Cauchy machine) the temperature may be
reduced inversely with training time, thereby yielding a major re-
duction in the time required for convergence.

Note that there is a class of statistical methods for neural net-
works in which the network variables are neuron outputs rather
than weights. Chapter 5 treats these algorithms in detail.

SELF-ORGANIZATION

Kohonen (1984) has reported interesting and useful results from
his research on self-organizing maps used for pattern recognition
tasks. In general, these maps classify a pattern represented by a
vector of values in which each component of the vector corre-
sponds to an element of the pattern. Kohonen's algorithms arc
based upon a nonsupervised learning technique. Once trained,
application of an input vector from a given class will produce
excitation levels in each output neuron; the neuron with the maxi-
mum excitation represents the classification. Because the training
is performed without a target vector, there is no way to predict
prior to training which neuron will be associated with a given class
of input vectors. However, this mapping is casily done by testing
the network after it is trained.

The algorithm treats the set of 7 weights entering a neuron as a
vector in #-dimensional space. Prior to training. each component
of this weight vector is initialized to random values. Then cach
vector is normalized to make it of unit length in weight space. This
is done by dividing cach random weight by the square root of the
sum of the squares of the components of that weight vector.

All of the input vectors in the training set are likewise norma-
lized to unit length, and the network is trained according o the
algorithm that follows:

Appendix C 221

1. Apply an input vector X.

2. Calculate the distance D, (in 7 dimensional space) between X
and the weight vectors W, of each neuron. In Euclidean
space, this is calculated as follows:

N
r |
where

X, = component 7 of input vector X
w, = the weight from input 7 to neuron j

3. The neuron that has the weight vector closest to X is declared
the winner. This weight vector, called W, becomes the cen-
ter of a group of weight vectors that lie within a distance D
from W,

4. TTrain this group of nearby weight vectors according to the
formula that follows:

W1+ 1)=W(N+ X - W) for all weight vectors
within a distance D of W,

5. Perform steps 1 through 4, cvcling through each input vec-
tor.

As the network trains, gradually reduce the values of D and «.
Kohonen recommends that @ should start near 1 and go down to
0.1. whercas D can start out as large as the greatest distance be-
tween weight vectors, and end up so small that only one neuron is
trained.

Up to a point, the classification accuracy will improve with addi-
tonal training. Kohonen recommends that the number of training
cycles should be at least 500 times the number of output neurons
for good statistical accuracy.

The training algorithm adjusts the weight vectors in the vicinity
of the winning neuron to be more like the input vector. Because ;1il
vectors dare normalized to unit length, they may be considered to
be points on a unit hypersphere. The training operation then
moves the cluster of nearby weight points so that they are closer to
the input vector point.

222 Neural Computing: Theory and Practice

It is assumed that the input vectors are actually clustered into
classes that are similar, hence, close in vector space. A specific
class will tend to control a specific neuron, rotating its weight
vector toward the center of the class, making it more likely to be
the winner when any member of that class is applied to the input.

After training, classification is performed by applying an arbi-
trary vector, calculating the excitation produced for each neuron,
and then selecting the neuron with the highest excitation as the
indicator of the correct classification.

References

Grossberg. §. 1974. Classical and instrumental learning by ncural net-
works. Progress in theoretical biofogy, vol. 3. pp. 51-141. New
York: Academic Press.

Hebb, D. O.. 1949, Organization of bebavior. New York: Science Edi-
tions.

Kohonen, T. 1984. Self-organization and associative memor)y. Series in
Information Sciences, vol. 8. Berlin: Springer Verlag,.

Rosenblatt, R. 1939, Principles of neurodynamics. New York: Spartan
Books.

Widrow, B. 1959. Adaptive sampled-data systems, a statistical theory of
adaptation. /939 [RE WESCON Convention Record. part 4. New
York: Institute of Radio Engincers.

Widrow, B., and Hoff, M. 1960. Adaptive switching circuits. 1960 IRE
WESCON Convention Record. New York: Institute of Radio Engi-
neers.

Abstraction, 3, 66, 145, 180, 189

Accretive mode, 70

Acetylcholine, 197-198

Activation, 13, 14-15, 19, 21, 44,
49,99, 115, 122, 123, 132,
146, 155, 162, 163, 217

Activation function, 44, 153

Adaptive, 58, 113, 122-123, 127~
128,152, 155, 169

Adaptive resonance theory (ART). See
ART (Adaptive resonance
theory})

Adeline, 218

Adenosine, 199

Algebra, 201

Amplify, 15, 103, 122, 162, 163,
178, 199

Analog, 15, 21, 103. 105, 110, 121,
122,124, 1306, 186

Anatomy, 1, 3-4, 11-12, 169, 170

Anderson, James, 3

Annealing, 80, 84, 100-101, 219

Applications, 1, 2, 6,7, 10, 22,41,
54,56, 61-62, 70, 73-75, 85—
87, 103-109, 121, 161, 167,
211

Approximation, 21, 27,72, 74,75,
104, 122, 189, 199

Index

Architecture, 61, 110, 165, 187
Array, 53,99, 1106, 123, 155, 157-
159, 160-161, 162-163, 165,
178, 181, 205, 207
ART (Adaptive resonance theory)
architecture, 128-133
comparison layer, 130-131
gain 1, 133
gain 2, 132
recognition layer, 131-132
reset, 133
characteristics, 144-148
classification, 133-1306
comparison phase, 134-
135
performance issues, 136
recognition phase, 133-154
search phase, 135-136
operation, 137-141
comparison, 139-140
initialization, 137-138
recognition, 138-139
search, 140
training, 142-144
theorems, 148
training example, 142144
Associations, 113, 116-119. 120,
121, 122

223

224 Index

Associative, 19, 98-99, 113-114,
160, 162

Asymptotic, 141

Asynchronous, 122

Attenuate, 45

Attraction, 117, 121

Attributes, 16

Autoassociative, 113, 119

Axon, 12, 21, 191-192, 194-195,
197

Backpropagation, 6-7,43-58, 61,
75,79,87-92, 127, 165
Backpropagation training algorithm,
44-54
BAM (Bidirectional associative mem-
ory), 113-124, 156-157,
158-159
Bidirectional associative memory. See
BAM (Bidirectional associative
memory)
Bias, 53,55, 109
Bidirectional, 62
Binary, 33, 36, 41,47, 55, 62, 74,
94-96. 98,99, 101, 104-103,
110, 118, 128, 130-131, 134,
139, 141, 155, 217, 218
Biochemical, 198-199
Biochemistry, 189-190
Biology, 1-2, 11-12, 14, 16-17, 21.
23,27, 38,58,99, 122, 123,
153, 168, 173, 186, 187, 189—
200,211,212, 214
Biological neural network, 189-200
Biologically plausible, 148-149
Biologists, 16, 200
Bipolar, 16,118, 120
Bit. 37,56, 73=-74, 95, 103, 152
Blood-brain barrier. 190-191
Bloodstream. 190
Body, 12, 190-195
Boltzmann
distribution, 90, 220
machine, 89, 100, 102
probability factor, 101, 102
training, 81-83

Bottom-up weight initialization, 137,
141, 145-147

Brain, 2, 3-4, 5,9, 11-12, 18, 23,
24, 27,061, 113,122,127,
148-149, 168, 170, 177, 178,
187, 189-200, 211

Brainlike, 2, 4, 168, 189

Brightness, 160

Calcium, 197
Calculus, 85
Categorization, 138, 144
Cats, 168, 185
Cauchy
distribution, 220
machine, 57
method, 85
training, 83-84, 89-92
Cell, 12, 14, 16, 21, 148, 168. 169,
171, 173-178, 179, 180, 181~
187, 191-199
Cell body, 192-193
Cerebral, 148
Channel, 196-198
Chaos, 93
Chaotic systems, 93
Chloride, 198
Circuits, 4. 103-104, 121, 124, 151-
152, 158, 194
Clamped, 102-103
Classification, 33, 36, 37, 129, 131,
133-135, 144, 1406, 184, 187,
220-222
Code, 121
Cognitive, 187. 190
Cognitron, 167-188
Cohen-Grossberg theorem, 123
Collimated. 156, 157, 158
Column vector, 204
Comparison layer, 130131
Competition, 123, 132, 133, 140.
146, 147, 171, 174, 175,177,
178, 185
Conductance, 105-1006
Connectivity, 17, 151-152, 194
Continuous BAM, 121-122

Contour, 100

Contrast, 123, 155

Convergence, 5, 22, 53. 55, 57-38,
72,82,85-92, 109, 110, 116,
119, 121, 124, 130, 161, 162,
200, 216, 218-220

Converter, 103-106, 109

Convex, 34-36, 70, 88

Convex combination method, 69-
70

Cooling, 82, 101. 191

Correlation, 160-161, 212

Cortex, 168, 170, 177, 179, 180,
186

Cortical, 168, 177

Counterpropagation, 61-75

Crystal, 80, 155, 161-162

Delta rule. 40-41, 50

Dendrites, 12, 191, 193-194, 197

Denominator, 145

Density, 69, 71, 151, 152, 16

Derivative, 45, 50, 52, 33, 55
88

Deterministic, 77, 85, 100

Differentiable, 45

Differential equations, 21, 88, 141

Diffraction. 163

Diodes, 155

Diseases, 195

Dot product. 155. 202-203

Drugs, 191

Dynamic, 55, 93, 103, 111. 122,
141, 196, 200

2,165
V57,

Electrocardiogram. 5

Electrochemical, 12, 168, 189, 192.
195, 199

Electro-optical BAM, 156-157

Elecrro-optical Hopfield net, 155

Electro-optical matrix multiplicr,
153-159

Encoding, 117-119, 145

Enhancement, 62, 161

Environment, 2, 8, 58, 75, 127, 129,
167, 168, 196, 197

Index 225

Enzymes, 196

Epoch, 104

Even coding, 120

Evolution, 9, 25, 190
Exclusive-nor, 36
Exclusive-or, 5, 30-33, 36, 91
Exemplar, 131, 142, 148
Exponential, 37, 54, 110

Fan-out, 22, 62, 134

Feedback, 20, 47, 55, 93, 119, 130,
132, 135, 139, 144, 157, 159,
162, 165, 176, 213

Feedforward, 20. 46. 62, 73, 98,
136

Fourier optics, 164

Fourier transform, 164-165

Fukushima, Kunihiko, 169, 170, 171.
176, 178, 179, 186

GABA, 198

Gain, 15, 1006, 130, 163

Gain 1, 130, 133, 134

Gain 2, 132

Gamma-aminobutyric acid (GABA).
See GABA

Gaussian distribution, 82

Generalization, 2, 40, 61, 87, 113,
143,177, 183-184. 204

Glial cells, 191

Global, 40, 99, 108, 109, 212, 213,
219

Global minimum, 57, 79. 82, 85, 87.
88, 90,92, 100, 220

Graded, 195

Gradient, 57. 87. 88, 195. 196

Grandmother cells, 148

Gravitational. 117

Grossberg layer, 62, 64, 69, 70, 71—
72,74

Grossberg, Stephen, 5. 61, 115, 123,
214

Gullies, 54, 57

Hardware, 27, 38, 199
Heating, 101

226 Index

Hebb, D. O., 24, 212-213

Hebbian learning, 24, 123, 212-214

Hecht-Nielsen, Robert, 61, 75

Heteroassociative, 113

Heuristic, 57, 87, 106

Hidden layers, 50-53

Hierarchical, 179, 180

Hologram, 152. See also Volume
hologram

Holographic correlator, 159-161

Hopfield, John, 94, 98, 99, 103, 106,
109, 111, 114

Hopfield nets, 93-111, 113, 1 16,
119, 120, 155, 162-163

Huntington's chorea, 198

Hyperbolic, 15-10

Hypercube, 96, 98, 100

Hyperplane, 33

Hyperspace, 204

Hypersphere. 66, 69,71, 221

Hypotenuse, 65

ldentity mapping, 73

Image, 73-75, 152, 159-160, 162

Inhibition, lateral, 123, 132, 136,
139, 175-178. 187

Inhibitory neurons, 168, 169. 173~
177, 184, 185, 194

Initialization of weight vectors, 68—
70, 137-138, 220

Inner product, 202

Instahility. 119, 122

Instar, 214-216

Intelligence, 1, 2,5, 8

Interpolative mode, 70-71

lonic concentration gradient, 196—
197

lons, 196, 198

Kohonen layer, 62, 63-65, 66. 72,
T4

Kohonen neuron, 69, 70-71, 74

Kohonen, Teuvo. 5. 61, 220, 221

Laser, 160, 161, 163
Learning, 2, 4.7, 22-24, 40, 43, 47,

55,58, 119,122, 124, 127,
128, 142, 144, 146, 148, 179,
187, 189, 211-212, 220. See
also Hebbian learning; Percep-
tron learning theorem; Percep-
tron training algorithms;

Training

Learning algorithm, 21, 24, 162,
218

Learning rate coefficient, 41, 103,
123, 175

Learning theorem, 5

Liapunov function, 97

Light. See Electro-optical matrix
multiplier: Holographic
correlator

Linear algebra, 201

Linear modulator, 157-158

Linear separability. See Separability.
linear

Local minima, 7, 56. 57. 77, 79, 84,
87, 88.109

Logarithm, 82, 83, 220

Logical, 8, 63, 132, 139

Logistic function, 15, 16. 45. 53, 89,
99, 115

Lookup table, 61

Madeline, 218
Many-layered, 5
Map
energy-contour, 220
self-organizing, 61
Matrix, 18, 19, 49, 53,62, 64,97,
99, 108, 115, 116. 119, 122,
123, 157, 163, 165, 201-
209
Matrix addition, 205
Matrixes as vectors, 208
Matrixes, special operations, 209
Matrix multiplication, 18, 19, 205-
207
Matrix transposition, 207-208
Membrane, 191, 193, 196-199
Memory, 20, 37, 98-99, 110-111,
129, 148, 160, 162. See also

BAM (Bidirectional associative
memory)
Metal, 80, 84, 101, 219
Minima, local. See Local minima
Minsky, Marvin, 4-7, 28-29, 37
Mode, 63, 106, 165, 195
Model, 86, 173, 199
biological, 9, 21, 23, 27, 38, 168,
187, 189-190, 200, 214
human learning, 4
Fukushima's, 170
mathematical, 4, 16, 86
visual-system, 179-180
Module, 129-130, 133
Modulo, 108
Molecule, 191, 192, 194, 196, 197,
199
Momentum, 54
Multilayer networks, 7, 18-20. 28—
29, 36, 43, 45,49, 51. 170,
179, 213
Multi-output. 218
Multiplicand matrix, 2006
Multiplication, vector-matrix, 162,
205-206
Multiplier matrix. 206
Multiprocessor, 110
Myelin, 195

Nearest-neighbor, 37, 121

NEC, 50

Neocognitron, 136, 167, 179-188

Nerve, 16. 190, 193, 194, 197,
199

Nervous system, 4, 12, 191-195

Nets, neural, 77, 151-155, 165

NetTalk, 22, 56

Network capacity. 110-111

Neuroanatomy, 4, 200

Neurobiological, 199

Neurobiologists, 4

Neurophysiologists, 27, 200

Neurophysiology, 4, 173

Neurotransmitter, 194, 197, 198-
199

Nodes of Ranvier, 195

Index 227

Noise, 2, 15,70, 113,122, 159, 162,
198
Noise-saturation dilemma, 15
Nonconvex region, 36
Nonhomogeneous BAM, 120-121
Nonlinear
activation function, 19
function, 78, 94
gain, 15
input/output relations, 173
optimization problem, 85-87
system, 200
Nonlinearity, 45, 89, 213
Nonrecurrent network, 20, 93, 216
Nonrecursive calculations, 177
Nonsaturating mode, 165
Normalize, 68, 71, 73, 141, 214,
220, 221
NP complete, 106
Nutrients. 190

Operands, 209

Operator, 53, 209

Optical Fourier transform. See
Fourier transform

Qptical interconnect matrix, 164-
165

Optical matrix multiplier, 157

Optical neural networks, 151-165

Optimal, 55, 71,79, 106, 109, 122,
187

Optimization, 85-87. 100

Optimize, 91, 167, 199

Ordered sets, 201

Oscillations, 98, 119

Outer products. 208

Outstar, 61, 214-216

Paralysis, 56-57, 58, 87, 88-89, 90-
91,92

Parameter vigilance, 133, 136-138,
142, 143

Pathologies, 37, 47, 91

Perceptions, 168

Perceptron, 5, 6, 27-42, 53, 77, 79,
216-218

Index

Perceptron learning theorem, 29
Perceptron-like systems, 28
Perceptron training algorithm, 38-
42
Permeability, 191, 190
Philosophers, 3, 200
Philosophy. 1, 3, 137
Phonetic, 6
Photodetector, 155, 150
Photographic negative, 155
Photo-optical multiplier, 156
Photorefractive, 162
Physiologists, 3. 169, 200
Physiology. 1. 4. 169, 199. 212
Pixel, 56, 73-74, 143
Planar, 152

Plane. 30-31, 32-37, 181, 183, 180,

187,203
Plastic, 127
Plasticity, 127. 128
Pores, 191, 196
Postsynaptic, 169, 197, 198
Potassium, 190, 197, 198
Potassium channels. 197
Precursors, 198
Prenormalization, 68
Preprocessing, 65-68
Preselected, 173
Presynaptic, 169, 197
Prewired, 168
Probabilistic, 178
Probability. 33, 71, 79. 80-8+4, 89,

101. 102, 103. 219
Product matrix, 207
Proteins, 196, 197
Pseudorandom, 77
Pseudospecific heat, 84, 87
Psychology. 1.4, 169, 212
Pythagorean theorem, 65

Quantization, 7+

Randomize, 68-70, 217

Ray (light). 152, 154, 157, 162
Recognition layer, 131-132
Recognition phase, 133—-134

Recollection, 98, 148

Recurrent networks, 19-20, 55, 93,
94-98, 103, 106, 111, 162

Refraction, 162

Refractory, 197

Regenerate, 165, 192, 195

Relax, 99, 102

Reliable. 9, 109, 177

Representation, 11, 21-22, 29, 37,
148

Resistor, 103, 122

Resonance, 116, 119, 127-149

Resonant loop, 162

Retina, 123, 180

Retrain, 88

Retrieve, 37, 116-117. 120, 124,
159

Reverberate, 161

Rhombic, 178

Rosenblatt, Frank, 4, 28. 38. 216

Row vector, 204. 207-208

Sample, 167

Saturation, 15, 45, 47, 89, 90-91,
163, 165

Schwann cells, 195

Second-order backpropagation, 55

Sejnowski, T.J., 22

Self-adjustment. 2, 38

self-organization, 23. 38, 67, 72,
170, 179, 186, 211, 220-222

Self-organizing algorithm, O+

Self-organizing map. 01

self-referential inquiry, 3

Sensorimotor functions, 190

Sensory experience, 98

Sensory information. 127

Sensory neurons, 127

Separability, linear, 33-306. 38. 40,
41

Sigmoid, 15,45, 99. 104, 115,122,
162, 163,213, 218

Silicon, 151

Simulated annealing. 80

Simulation, 4, 89, 110, 128, 136,
169, 173, 178-179

Software, 27, 199

Sparse set, 121

Specializations, 191, 193

Specific heat, 84-85, 87

Speech, 6. 56. 74

Squashing function. 15. 45, 50. 5
53,55, 57.88,90-91

Stability, 54, 56. 93, 94, 97-98, 99—

V]

100, 102, 103, 111, 115, 116,

119-123, 148, 155, 156, 157

Stability-plasticity dilemma, 127,
129, 147

Stabilization, 79. 96. 100, 110, 116,
119, 136, 148, 159, 176

Statistical estimates, 9

Statistical Hopfield networks, 101-
102

Statistical measure, 216

Suatistical methods, 57

Statistical model, 75

Statistical properties, 23, 71

Statistical training methods, 77-92,
218-220

Stimulus, 178, 184

Stochastic optimization technique,

87
Storage, 37-38, 58, 110, 124. 143,
148, 152

Subimage. 73-74

Supercomputers, 4

Superposition, 161, 165

Supervised learning. 24, 38. 179,
211-212

Supervised training, 23, 72, 170,
186, 216-217

Surface, 32, 54, 57,79, 88, 109, 117,

161.162
Symmetry, 16, 91, 97, 98, 99, 103,
119, 123, 155, 157

Svnapse, 12,13, 168, 169, 171, 175,
178, 184-185. 190, 191. 194,

196, 199, 212
Svnaptic cleft, 194, 197
Svnaptic connection, 13, 152, 168,
173,178, 193, 194
Synaptic inputs, 197

Index 229

Synaptic strength, 13, 24, 170, 171,
172, 184185, 186

Synaptic vesicles, 194

Synaptic weights, 173, 178, 214

Synchronous, 16, 121, 122

Temperature, 80-85, 101, 102, 219,
220

Template, 175

Temporal instability, 58, 128, 142

Theorem, 5, 8, 65, 94, 144, 148

Thermal system, 83

Thermodynamics, 84, 101

Threshold, 12, 27, 30, 31-34, 30,
39, 40, 53, 70, 94, 96-98,
102, 119, 120, 122, 139, 158,
160, 172, 173, 194

Threshold function, 14, 99, 104,
115, 155, 156, 157, 217

Top-down, 135, 137, 138, 142, 144
145, 148, 181

Training, 7, 19, 22-25, 38, 47-57,
64-72,74,75,77-91, 118,
140-146, 170-179, 184-187,
214-220. See also Backpropa-
gation training algorithm;
Learning; Perceptron training
algorithm

Training pair, 23, 47

Training set, 47

Transmissivity, 157, 159

Transmittance, 154, 155

Trapped. 7. 57, 79, 85, 92,99, 100

Traveling salesman problem, 106-
109

Triphosphate. 199

TSP See Traveling salesman problem

Two-thirds rule. 130, 134, 138, 139,
140, 144

Variance. 83, 89, 90

Vector addition, 202

Vector-matrix multiplication, 153,
155,162, 165

Vector transposition, 204, 207

Vertex, 95-96, 98, 100

230 Index

Vesicles, 194

Vigilance, 129, 133, 135-140, 142~
144, 146, 147

VLSI (very large-scale integration),
122, 187

Volume holograms, 161-163, 164~
165

Weber-Fechner law, 173

Widrow, Bernard, 4, 24, 28, 218

Widrow-Hoff training, 218

Winner, 64, 66, 68, 70, 136, 146,
175, 221, 222

wWinner-take-all, 63, 132

Winning, 70, 132

Winning neuron, 67, 70, 140, 141,
148, 221

Winning vector, 144

